Chinese clinical named entity recognition using pre-trained BERT model

Related tags

Deep Learningbertcner
Overview

Chinese clinical named entity recognition (CNER) using pre-trained BERT model

Introduction

Code for paper Chinese clinical named entity recognition with variant neural structures based on BERT methods

Paper url: https://www.sciencedirect.com/science/article/pii/S1532046420300502

We pre-trained BERT model to improve the performance of Chinese CNER. Different layers such as Long Short-Term Memory (LSTM) and Conditional Random Field (CRF) were used to extract the text features and decode the predicted tags respectively. And we also proposed a new strategy to incorporate dictionary features into the model. Radical features of Chinese characters were also used to improve the model performance.

Model structure

Model Structure

Usage

Pre-trained models

For replication, we uploaded two models in Baidu Netdisk.

Link: https://pan.baidu.com/s/1obzG6OSbu77duhusWg2xmQ Code: k53q

Examples

To replicate the result of CCKS-2018 dataset

python main.py \
--data_dir=data/ccks_2018 \
--bert_model=model/  \
--output_dir=./output  \
--terminology_dicts_path="{'medicine':'data/ccks_2018/drug_dict.txt','surgery':'data/ccks_2018/surgery_dict.txt'}" \
--radical_dict_path data/radical_dict.txt \
--constant=0 \
--add_radical_or_not=True \
--radical_one_hot=False \
--radical_emb_dim=20 \
--max_seq_length=480 \
--do_train=True \
--do_eval=True \
--train_batch_size=6 \
--eval_batch_size=4 \
--hidden_dim=64 \
--learning_rate=5e-5 \
--num_train_epochs=5 \
--gpu_id=3 \

Results

CCKS-2018 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 88.57 89.02 88.80
+dictionary 88.58 89.17 88.87
+radical(one-hot encoding) 88.51 89.39 88.95
+radical(random embedding) 89.24 89.11 89.17
+dictionary +radical 89.42 89.22 89.32
ensemble 89.59 89.54 89.56
Team Name Method F1
Yang and Huang (2018) CRF(feature-rich + rule) 89.26
heiheihahei LSTM-CRF(ensemble) 88.92
Luo et al.(2018) LSTM-CRF(ensemble) 88.63
dous12 - 88.37
chengachengcheng - 88.30
NUBT-IBDL - 87.62
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 89.56

CCKS-2017 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 91.64 90.98 91.31
+dictionary 91.49 90.97 91.23
+radical(one-hot encoding) 91.83 90.80 91.35
+radical(random embedding) 92.07 90.77 91.42
+dictionary+radical 91.76 90.88 91.32
ensemble 92.06 91.15 91.60
Team Name Method F1
Qiu et al. (2018b) RD-CNN-CRF 91.32
Wang et al. (2019) BiLSTM-CRF+Dictionary 91.24
Hu et al. (2017) BiLSTM-FEA(ensemble) 91.03
Zhang et al. (2018) BiLSTM-CRF(mt+att+ms) 90.52
Xia and Wang (2017) BiLSTM-CRF(ensemble) 89.88
Ouyang et al. (2017) BiRNN-CRF 88.85
Li et al. (2017) BiLSTM-CRF(specialized +lexicons) 87.95
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 91.60
Owner
Xiangyang Li
Xiangyang Li
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022