Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Overview

Deep learning algorithms for muon momentum estimation in the CMS Trigger System

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider (LHC). During a run, it generates about 40 TB data per second. Since It is not feasible to readout and store such a vast amount of data, so a trigger system selects and stores only interesting events or events likely to reveal new physics phenomena. The goal of this project is to benchmark the muon momentum estimation performance of Fully Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN), and Graph Neural Networks (GNN), on the prompt and displaced muon samples detected by CSC stations at CMS to aid trigger system's transverse momentum (pT) muon estimation.

About

In the project FCNNs, CNNs, and GNNs are trained and evaluated on the prompt muon samples (two versions of same samples with different sampling approaches), and displaced muon samples generated by Monte Carlo simulation. The other details are -

  • Target Variables: Three types of predictions are benchmarked with each type of algorithm.
Target Loss
1/Transverse_momentum (1/pT) Mean Square Error (MSE)
Transverse Momentum (pT)
4 class classification
(0-10 GeV, 10-30 GeV, 30-100 GeV, >100 GeV)
Focal Loss
  • Validation Scheme: 10 fold out-of-fold predictions (i.e. dataset is splitted into 10 small batches, out of them 8 are used for training, 1 as validation dataset and 1 as holdout. This holdout is changed 10 times to give the final scores.)

  • Metrices Tracked:

    • MAE - Mean Absolute Error at a given transverse momentum (pT).
    • MAE/pT - Ratio of Mean Absolute Error to transverse momentum at a given transverse momentum.
    • Acurracy - At a given pT, muon samples can be divided into two classes, one muons with pT more than this given and another class of muons with pT less than this. So, Acurracy at a given pT is the accuracy for these two classes.
    • F1-score (of class pT>x GeV) - At a given pT, this is the f1-score of the class of muons with pT more than this given pT.
    • F1-score (of class pT - At a given pT, this is the f1-score of the class of muons with pT less than this given pT.
    • ROC-AUC Score of each class - only in case of four class classification
  • Preprocessing: Standard scaling of input coordinates

How to use

  1. Make sure that all the libraries mentioned in requirements.txt are installed
  2. Clone the repo
https://github.com/lastnameis-borah/CMS_moun_transverse_momentum_estimation.git
  1. Change current directory to the cloned directory and execute main.py with the required arguments
python main.py --path='/kaggle/input/cmsnewsamples/new-smaples.csv' \
                --dataset='prompt_new'\
                --predict='pT'\
                --model='FCNN'\
                --epochs=50 \
                --batch_size=512\
                --folds="0,1,2,3,4,5,6,7,8,9" \
                --results='/kaggle/working/results'

Note: Give absolute paths as argument

Arguments

  1. path - path of the csv having the coordinates of generated muon samples
  2. dataset - specify the samples that you are using (i.e. prompt_new, prompt_old, or displaced)
  3. predict - target variable (i.e. pT, 1/pT, or pT_classes)
  4. model - architecture to use (i.e. FCNN, CNN, or GNN)
  5. epochs - max number of epochs to train, if score converges than due to early-stopping training may stop earlier
  6. batchsize - number of samples in a batch
  7. folds - a string containing the info on which folds one wants the result
  8. results - path of the directory to save the results

Results

Regressing 1/pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Regressing pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Four class classification

  • Prompt Muons Samples-1
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.970 0.977 0.969
CNN 0.991 0.973 0.980 0.983
  • Prompt Muons Samples-2
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.975 0.981 0.958
CNN 0.991 0.976 0.983 0.983
  • Displaced Muons Samples
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.944 0.898 0.910 0.839
CNN 0.958 0.907 0.932 0.910
Owner
anuragB
Petroleum Engineering Undergrad. IITM Data Science Undergrad.
anuragB
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022