A curated list of neural network pruning resources.

Overview

Awesome Pruning Awesome

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Please feel free to pull requests or open an issue to add papers.

Table of Contents

Type of Pruning

Type F W Other
Explanation Filter pruning Weight pruning other types

2020

Title Venue Type Code
HYDRA: Pruning Adversarially Robust Neural Networks NeurIPS W PyTorch(Author)
Logarithmic Pruning is All You Need NeurIPS W -
Directional Pruning of Deep Neural Networks NeurIPS W -
Movement Pruning: Adaptive Sparsity by Fine-Tuning NeurIPS W PyTorch(Author)
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot NeurIPS W PyTorch(Author)
Neuron Merging: Compensating for Pruned Neurons NeurIPS F PyTorch(Author)
Neuron-level Structured Pruning using Polarization Regularizer NeurIPS F PyTorch(Author)
SCOP: Scientific Control for Reliable Neural Network Pruning NeurIPS F -
Storage Efficient and Dynamic Flexible Runtime Channel Pruning via Deep Reinforcement Learning NeurIPS F -
The Generalization-Stability Tradeoff In Neural Network Pruning NeurIPS F PyTorch(Author)
Pruning Filter in Filter NeurIPS Other PyTorch(Author)
Position-based Scaled Gradient for Model Quantization and Pruning NeurIPS Other PyTorch(Author)
Bayesian Bits: Unifying Quantization and Pruning NeurIPS Other -
Pruning neural networks without any data by iteratively conserving synaptic flow NeurIPS Other PyTorch(Author)
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning ECCV (Oral) F PyTorch(Author)
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation ECCV F -
DHP: Differentiable Meta Pruning via HyperNetworks ECCV F PyTorch(Author)
Meta-Learning with Network Pruning ECCV W -
Accelerating CNN Training by Pruning Activation Gradients ECCV W -
DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search ECCV Other -
Differentiable Joint Pruning and Quantization for Hardware Efficiency ECCV Other -
Channel Pruning via Automatic Structure Search IJCAI F PyTorch(Author)
Adversarial Neural Pruning with Latent Vulnerability Suppression ICML W -
Proving the Lottery Ticket Hypothesis: Pruning is All You Need ICML W -
Soft Threshold Weight Reparameterization for Learnable Sparsity ICML WF Pytorch(Author)
Network Pruning by Greedy Subnetwork Selection ICML F -
Operation-Aware Soft Channel Pruning using Differentiable Masks ICML F -
DropNet: Reducing Neural Network Complexity via Iterative Pruning ICML F -
Towards Efficient Model Compression via Learned Global Ranking CVPR (Oral) F Pytorch(Author)
HRank: Filter Pruning using High-Rank Feature Map CVPR (Oral) F Pytorch(Author)
Neural Network Pruning with Residual-Connections and Limited-Data CVPR (Oral) F -
Multi-Dimensional Pruning: A Unified Framework for Model Compression CVPR (Oral) WF -
DMCP: Differentiable Markov Channel Pruning for Neural Networks CVPR (Oral) F TensorFlow(Author)
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression CVPR F PyTorch(Author)
Few Sample Knowledge Distillation for Efficient Network Compression CVPR F -
Discrete Model Compression With Resource Constraint for Deep Neural Networks CVPR F -
Structured Compression by Weight Encryption for Unstructured Pruning and Quantization CVPR W -
Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration CVPR F -
APQ: Joint Search for Network Architecture, Pruning and Quantization Policy CVPR F -
Comparing Rewinding and Fine-tuning in Neural Network Pruning ICLR (Oral) WF TensorFlow(Author)
A Signal Propagation Perspective for Pruning Neural Networks at Initialization ICLR (Spotlight) W -
ProxSGD: Training Structured Neural Networks under Regularization and Constraints ICLR W TF+PT(Author)
One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation ICLR W -
Lookahead: A Far-sighted Alternative of Magnitude-based Pruning ICLR W PyTorch(Author)
Dynamic Model Pruning with Feedback ICLR WF -
Provable Filter Pruning for Efficient Neural Networks ICLR F -
Data-Independent Neural Pruning via Coresets ICLR W -
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates AAAI F -
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks AAAI Other -
Pruning from Scratch AAAI Other -

2019

Title Venue Type Code
Network Pruning via Transformable Architecture Search NeurIPS F PyTorch(Author)
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks NeurIPS F PyTorch(Author)
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask NeurIPS W TensorFlow(Author)
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers NeurIPS W -
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks NeurIPS W PyTorch(Author)
AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters NeurIPS W -
Model Compression with Adversarial Robustness: A Unified Optimization Framework NeurIPS Other PyTorch(Author)
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning ICCV F PyTorch(Author)
Accelerate CNN via Recursive Bayesian Pruning ICCV F -
Adversarial Robustness vs Model Compression, or Both? ICCV W PyTorch(Author)
Learning Filter Basis for Convolutional Neural Network Compression ICCV Other -
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration CVPR (Oral) F PyTorch(Author)
Towards Optimal Structured CNN Pruning via Generative Adversarial Learning CVPR F PyTorch(Author)
Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure CVPR F PyTorch(Author)
On Implicit Filter Level Sparsity in Convolutional Neural Networks, Extension1, Extension2 CVPR F PyTorch(Author)
Structured Pruning of Neural Networks with Budget-Aware Regularization CVPR F -
Importance Estimation for Neural Network Pruning CVPR F PyTorch(Author)
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks CVPR F -
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search CVPR Other TensorFlow(Author)
Variational Convolutional Neural Network Pruning CVPR - -
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks ICLR (Best) W TensorFlow(Author)
Rethinking the Value of Network Pruning ICLR F PyTorch(Author)
Dynamic Channel Pruning: Feature Boosting and Suppression ICLR F TensorFlow(Author)
SNIP: Single-shot Network Pruning based on Connection Sensitivity ICLR W TensorFLow(Author)
Dynamic Sparse Graph for Efficient Deep Learning ICLR F CUDA(3rd)
Collaborative Channel Pruning for Deep Networks ICML F -
Approximated Oracle Filter Pruning for Destructive CNN Width Optimization github ICML F -
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis4 ICML W PyTorch(Author)
COP: Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning IJCAI F Tensorflow(Author)

2018

Title Venue Type Code
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers ICLR F TensorFlow(Author), PyTorch(3rd)
To prune, or not to prune: exploring the efficacy of pruning for model compression ICLR W -
Discrimination-aware Channel Pruning for Deep Neural Networks NeurIPS F TensorFlow(Author)
Frequency-Domain Dynamic Pruning for Convolutional Neural Networks NeurIPS W -
Learning Sparse Neural Networks via Sensitivity-Driven Regularization NeurIPS WF -
Amc: Automl for model compression and acceleration on mobile devices ECCV F TensorFlow(3rd)
Data-Driven Sparse Structure Selection for Deep Neural Networks ECCV F MXNet(Author)
Coreset-Based Neural Network Compression ECCV F PyTorch(Author)
Constraint-Aware Deep Neural Network Compression ECCV W SkimCaffe(Author)
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers ECCV W Caffe(Author)
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning CVPR F PyTorch(Author)
NISP: Pruning Networks using Neuron Importance Score Propagation CVPR F -
CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization CVPR W -
“Learning-Compression” Algorithms for Neural Net Pruning CVPR W -
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks IJCAI F PyTorch(Author)
Accelerating Convolutional Networks via Global & Dynamic Filter Pruning IJCAI F -

2017

Title Venue Type Code
Pruning Filters for Efficient ConvNets ICLR F PyTorch(3rd)
Pruning Convolutional Neural Networks for Resource Efficient Inference ICLR F TensorFlow(3rd)
Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee NeurIPS W TensorFlow(Author)
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon NeurIPS W PyTorch(Author)
Runtime Neural Pruning NeurIPS F -
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning CVPR F -
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression ICCV F Caffe(Author), PyTorch(3rd)
Channel pruning for accelerating very deep neural networks ICCV F Caffe(Author)
Learning Efficient Convolutional Networks Through Network Slimming ICCV F PyTorch(Author)

2016

Title Venue Type Code
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding ICLR (Best) W Caffe(Author)
Dynamic Network Surgery for Efficient DNNs NeurIPS W Caffe(Author)

2015

Title Venue Type Code
Learning both Weights and Connections for Efficient Neural Networks NeurIPS W PyTorch(3rd)

Related Repo

Awesome-model-compression-and-acceleration

EfficientDNNs

Embedded-Neural-Network

awesome-AutoML-and-Lightweight-Models

Model-Compression-Papers

knowledge-distillation-papers

Network-Speed-and-Compression

Owner
Yang He
Ph.D. student at UTS
Yang He
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022