FID calculation with proper image resizing and quantization steps

Overview

clean-fid: Fixing Inconsistencies in FID


Project | Paper

The FID calculation involves many steps that can produce inconsistencies in the final metric. As shown below, different implementations use different low-level image quantization and resizing functions, the latter of which are often implemented incorrectly.

We provide an easy-to-use library to address the above issues and make the FID scores comparable across different methods, papers, and groups.

FID Steps


On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation
Gaurav Parmar, Richard Zhang, Jun-Yan Zhu
arXiv 2104.11222, 2021
CMU and Adobe



Buggy Resizing Operations

The definitions of resizing functions are mathematical and should never be a function of the library being used. Unfortunately, implementations differ across commonly-used libraries. They are often implemented incorrectly by popular libraries.


The inconsistencies among implementations can have a drastic effect of the evaluations metrics. The table below shows that FFHQ dataset images resized with bicubic implementation from other libraries (OpenCV, PyTorch, TensorFlow, OpenCV) have a large FID score (≥ 6) when compared to the same images resized with the correctly implemented PIL-bicubic filter. Other correctly implemented filters from PIL (Lanczos, bilinear, box) all result in relatively smaller FID score (≤ 0.75).

JPEG Image Compression

Image compression can have a surprisingly large effect on FID. Images are perceptually indistinguishable from each other but have a large FID score. The FID scores under the images are calculated between all FFHQ images saved using the corresponding JPEG format and the PNG format.

Below, we study the effect of JPEG compression for StyleGAN2 models trained on the FFHQ dataset (left) and LSUN outdoor Church dataset (right). Note that LSUN dataset images were collected with JPEG compression (quality 75), whereas FFHQ images were collected as PNG. Interestingly, for LSUN dataset, the best FID score (3.48) is obtained when the generated images are compressed with JPEG quality 87.


Quick Start

  • install requirements

    pip install -r requirements.txt
    
  • install the library

    pip install clean-fid
    
  • Compute FID between two image folders

    from cleanfid import fid
    
    score = fid.compute_fid(fdir1, fdir2)
    
  • Compute FID between one folder of images and pre-computed datasets statistics (e.g., FFHQ)

    from cleanfid import fid
    
    score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=1024)
    
    
  • Compute FID using a generative model and pre-computed dataset statistics:

    from cleanfid import fid
    
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    
    score = fid.compute_fid(gen=gen, dataset_name="FFHQ",
            dataset_res=256, num_gen=50_000)
    
    

Supported Precomputed Datasets

We provide precompute statistics for the following configurations

Task Dataset Resolution split mode
Image Generation FFHQ 256,1024 train+val clean, legacy_pytorch, legacy_tensorflow
Image Generation LSUN Outdoor Churches 256 train clean, legacy_pytorch, legacy_tensorflow
Image to Image horse2zebra 128,256 train, test, train+test clean, legacy_pytorch, legacy_tensorflow

Using precomputed statistics In order to compute the FID score with the precomputed dataset statistics, use the corresponding options. For instance, to compute the clean-fid score on generated 256x256 FFHQ images use the command:

fid_score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=256,  mode="clean")

Create Custom Dataset Statistics

  • dataset_path: folder where the dataset images are stored
  • Generate and save the inception statistics
    import numpy as np
    from cleanfid import fid
    dataset_path = ...
    feat = fid.get_folder_features(dataset_path, num=50_000)
    mu = np.mean(feats, axis=0)
    sigma = np.cov(feats, rowvar=False)
    np.savez_compressed("stats.npz", mu=mu, sigma=sigma)
    

Backwards Compatibility

We provide two flags to reproduce the legacy FID score.

  • mode="legacy_pytorch"
    This flag is equivalent to using the popular PyTorch FID implementation provided here
    The difference between using clean-fid with this option and code is ~1.9e-06
    See doc for how the methods are compared

  • mode="legacy_tensorflow"
    This flag is equivalent to using the official implementation of FID released by the authors. To use this flag, you need to additionally install tensorflow. The tensorflow cuda version may cause issues with the pytorch code. I have tested this with TensorFlow-cpu 2.2 (`pip install tensorflow-cpu==2.2)


CleanFID Leaderboard for common tasks


FFHQ @ 1024x1024

Model Legacy-FID Clean-FID
StyleGAN2 2.85 ± 0.05 3.08 ± 0.05
StyleGAN 4.44 ± 0.04 4.82 ± 0.04
MSG-GAN 6.09 ± 0.04 6.58 ± 0.06

Image-to-Image (horse->zebra @ 256x256) Computed using test images

Model Legacy-FID Clean-FID
CycleGAN 77.20 75.17
CUT 45.51 43.71

Building from source

python setup.py bdist_wheel
pip install dist/*

Citation

If you find this repository useful for your research, please cite the following work.

@article{parmar2021cleanfid,
  title={On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation},
  author={Parmar, Gaurav and Zhang, Richard and Zhu, Jun-Yan},
  journal={arXiv preprint arXiv:2104.11222},
  year={2021}
}

Credits

PyTorch-StyleGAN2: code | License

PyTorch-FID: code | License

StyleGAN2: code | LICENSE

converted FFHQ weights: code | License

a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022