[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

Overview

template-pose

Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper (accepted to CVPR 2022)

Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann and Vincent Lepetit

Check out our paper and webpage for details!

figures/method.png

If our project is helpful for your research, please consider citing :

@inproceedings{nguyen2022template,
    title={Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions},
    author={Nguyen, Van Nguyen and Hu, Yinlin and Xiao, Yang and Salzmann, Mathieu and Lepetit, Vincent},
    booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}}

Table of Content

Methodology 🧑‍🎓

We introduce template-pose, which estimates 3D pose of new objects (can be very different from the training ones, i.e LINEMOD dataset) with only their 3D models. Our method requires neither a training phase on these objects nor images depicting them.

Two settings are considered in this work:

Dataset Predict ID object In-plane rotation
(Occlusion-)LINEMOD Yes No
T-LESS No Yes

Installation 👨‍🔧

We recommend creating a new Anaconda environment to use template-pose. Use the following commands to setup a new environment:

conda env create -f environment.yml
conda activate template

Optional: Installation of BlenderProc is required to render synthetic images. It can be ignored if you use our provided template. More details can be found in Datasets.

Datasets 😺 🔌

Before downloading the datasets, you may change this line to define the $ROOT folder (to store data and results).

There are two options:

  1. To download our pre-processed datasets (15GB) + SUN397 dataset (37GB)
./data/download_preprocessed_data.sh

Optional: You can download with following gdrive links and unzip them manually. We recommend keeping $DATA folder structure as detailed in ./data/README to keep pipeline simple:

  1. To download the original datasets and process them from scratch (process GT poses, render templates, compute nearest neighbors). All the main steps are detailed in ./data/README.
./data/download_and_process_from_scratch.sh

For any training with backbone ResNet50, we initialise with pretrained features of MOCOv2 which can be downloaded with the following command:

python -m lib.download_weight --model_name MoCov2

T-LESS 🔌

1. To launch a training on T-LESS:

python train_tless.py --config_path ./config_run/TLESS.json

2. To reproduce the results on T-LESS:

To download pretrained weights (by default, they are saved at $ROOT/pretrained/TLESS.pth):

python -m lib.download_weight --model_name TLESS

Optional: You can download manually with this link

To evaluate model with the pretrained weight:

python test_tless.py --config_path ./config_run/TLESS.json --checkpoint $ROOT/pretrained/TLESS.pth

LINEMOD and Occlusion-LINEMOD 😺

1. To launch a training on LINEMOD:

python train_linemod.py --config_path config_run/LM_$backbone_$split_name.json

For example, with “base" backbone and split #1:

python train_linemod.py --config_path config_run/LM_baseNetwork_split1.json

2. To reproduce the results on LINEMOD:

To download pretrained weights (by default, they are saved at $ROOT/pretrained):

python -m lib.download_weight --model_name LM_$backbone_$split_name

Optional: You can download manually with this link

To evaluate model with a checkpoint_path:

python test_linemod.py --config_path config_run/LM_$backbone_$split_name.json --checkpoint checkpoint_path

For example, with “base" backbone and split #1:

python -m lib.download_weight --model_name LM_baseNetwork_split1
python test_linemod.py --config_path config_run/LM_baseNetwork_split1.json --checkpoint $ROOT/pretrained/LM_baseNetwork_split1.pth

Acknowledgement

The code is adapted from PoseContrast, DTI-Clustering, CosyPose and BOP Toolkit. Many thanks to them!

The authors thank Martin Sundermeyer, Paul Wohlhart and Shreyas Hampali for their fast reply, feedback!

Contact

If you have any question, feel free to create an issue or contact the first author at [email protected]

Owner
Van Nguyen Nguyen
PhD student at Imagine-ENPC, France
Van Nguyen Nguyen
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022