Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Overview

Representation Robustness Evaluations

Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all the scripts, we assume the working directory to be the root folder of our code.

Get ready a pre-trained model

We have two methods to pre-train a model for evaluation. Method 1: Follow instructions from MadryLab's robustness package to train a standard model or a robust model with a given PGD setting. For example, to train a robust ResNet18 with l-inf constraint of eps 8/255

python -m robustness.main --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch resnet18 \
--epoch 150 \
--adv-train 1 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--exp-name resnet18_adv

Method 2: Use our wrapped code and set task=train-model. Optional commands:

  • --classifier-loss = robust (adversarial training) / standard (standard training)
  • --arch = baseline_mlp (baseline-h with last two layer as mlp) / baseline_linear (baseline-h with last two layer as linear classifier) / vgg16 / ...

Our results presented in Figure 1 and 2 use model architecture: baseline_mlp, resnet18, vgg16, resnet50, DenseNet121. For example, to train a baseline-h model with l-inf constraint of eps 8/255

python main.py --dataset cifar \
--task train-model \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch baseline_mlp \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--classifier-loss robust \
--exp-name baseline_mlp_adv

To parse the store file, run

from cox import store
s = store.Store('/path/to/model/parent-folder', 'model-folder')
print(s['logs'].df)
s.close()

 

Evaluate the representation robustness (Figure 1, 2, 3)

Set task=estimate-mi to load a pre-trained model and test the mutual information between input and representation. By subtracting the normal-case and worst-case mutual information we have the representation vulnerability. Optional commands:

  • --estimator-loss = worst (worst-case mutual information estimation) / normal (normal-case mutual information estimation)

For example, to test the worst-case mutual information of ResNet18, run

python main.py --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--task estimate-mi \
--representation-type layer \
--estimator-loss worst \
--arch resnet18 \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.best \
--exp-name estimator_worst__resnet18_adv \
--no-store

or to test on the baseline-h, run

python main.py --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--task estimate-mi \
--representation-type layer \
--estimator-loss worst \
--arch baseline_mlp \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.best \
--exp-name estimator_worst__baseline_mlp_adv \
--no-store

 

Learn Representations

Set task=train-encoder to learn a representation using our training principle. For train by worst-case mutual information maximization, we can use other lower-bound of mutual information as surrogate for our target, which may have slightly better empirical performance (e.g. nce). Please refer to arxiv.org/abs/1808.06670 for more information. Optional commands:

  • --estimator-loss = worst (worst-case mutual information maximization) / normal (normal-case mutual information maximization)
  • --va-mode = dv (Donsker-Varadhan representation) / nce (Noise-Contrastive Estimation) / fd (fenchel dual representation)
  • --arch = basic_encoder (Hjelm et al.) / ...

Example:

python main.py --dataset cifar \
--task train-encoder \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch basic_encoder \
--representation-type layer \
--estimator-loss worst \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--exp-name learned_encoder

 

Test on Downstream Classifications (Figure 4, 5, 6; Table 1, 3)

Set task=train-classifier to test the classification accuracy of learned representations. Optional commands:

  • --classifier-loss = robust (adversarial classification) / standard (standard classification)
  • --classifier-arch = mlp (mlp as downstream classifier) / linear (linear classifier as downstream classifier)

Example:

python main.py --dataset cifar \
--task train-classifier \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch basic_encoder \
--classifier-arch mlp \
--representation-type layer \
--classifier-loss robust \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.latest \
--exp-name test_learned_encoder
Owner
Sicheng
Sicheng
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022