DABO: Data Augmentation with Bilevel Optimization

Overview

License

figure figure

DABO: Data Augmentation with Bilevel Optimization [Paper]

The goal is to automatically learn an efficient data augmentation regime for image classification.

Accepted at WACV2021

Table of Contents

Overview

What's new: This method provides a way to automatically learn data augmentation in order to improve the image classification performance. It does not require us to hard code augmentation techniques, which might need domain knowledge or an expensive hyper-parameter search on the validation set.

Key insight: Our method efficiently trains a network that performs data augmentation. This network learns data augmentation by usiing the gradient that flows from computing the classifier's validation loss using an online version of bilevel optimization. We also perform truncated back-propagation in order to significantly reduce the computational cost of bilevel optimization.

How it works: Our method jointly trains a classifier and an augmentation network through the following steps,

figure

  • For each mini batch,a forward pass is made to calculate the training loss.
  • Based on the training loss and the gradient of the training loss, an optimization step is made for the classifier in the inner loop.
  • A forward pass is then made on the classifier with the new weight to calculate the validation loss.
  • The gradient from the validation loss is backpropagated to train the augmentation network.

Results: Our model obtains better results than carefuly hand engineered transformations and GAN-based approaches. Further, the results are competitive against methods that use a policy search on CIFAR10, CIFAR100, BACH, Tiny-Imagenet and Imagenet datasets.

Why it matters: Proper data augmentation can significantly improve generalization performance. Unfortunately, deriving these augmentations require domain expertise or extensive hyper-parameter search. Thus, having an automatic and quick way of identifying efficient data augmentation has a big impact in obtaining better models.

Where to go from here: Performance can be improved by extending the set of learned transformations to non-differentiable transformations. The estimation of the validation loss could also be improved by exploring more the influence of the number of iteration in the inner loop. Finally, the method can be extended to other tasks like object detection of image segmentation.

Experiments

1. Install requirements: Run this command to install the Haven library which helps in managing experiments.

pip install -r requirements.txt

2.1 CIFAR10 experiments: The followng command runs the training and validation loop for CIFAR.

python trainval.py -e cifar -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

2.2 BACH experiments: The followng command runs the training and validation loop on BACH dataset.

python trainval.py -e bach -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

3. Results: Display the results by following the steps below,

figure

Launch Jupyter by running the following on terminal,

jupyter nbextension enable --py widgetsnbextension
jupyter notebook

Then, run the following script on a Jupyter cell,

from haven import haven_jupyter as hj
from haven import haven_results as hr
from haven import haven_utils as hu

# path to where the experiments got saved
savedir_base = ''
exp_list = None

# exp_list = hu.load_py().EXP_GROUPS[]
# get experiments
rm = hr.ResultManager(exp_list=exp_list, 
                      savedir_base=savedir_base, 
                      verbose=0
                     )
y_metrics = ['test_acc']
bar_agg = 'max'
mode = 'bar'
legend_list = ['model.netA.name']
title_list = 'dataset.name'
legend_format = 'Augmentation Netwok: {}'
filterby_list = {'dataset':{'name':'cifar10'}, 'model':{'netC':{'name':'resnet18_meta_2'}}}

# launch dashboard
hj.get_dashboard(rm, vars(), wide_display=True)

Citation

@article{mounsaveng2020learning,
  title={Learning Data Augmentation with Online Bilevel Optimization for Image Classification},
  author={Mounsaveng, Saypraseuth and Laradji, Issam and Ayed, Ismail Ben and Vazquez, David and Pedersoli, Marco},
  journal={arXiv preprint arXiv:2006.14699},
  year={2020}
}
Owner
ElementAI
ElementAI
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earthโ€™s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer ๐Ÿ‘‰ [Preprint] ๐Ÿ‘ˆ Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
๐Ÿ”ฅ Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022