ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

Overview

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

This repository contains the source code of our paper, ESPNet (accepted for publication in ECCV'18).

Sample results

Check our project page for more qualitative results (videos).

Click on the below sample image to view the segmentation results on YouTube.

Structure of this repository

This repository is organized as:

  • train This directory contains the source code for trainig the ESPNet-C and ESPNet models.
  • test This directory contains the source code for evaluating our model on RGB Images.
  • pretrained This directory contains the pre-trained models on the CityScape dataset
    • encoder This directory contains the pretrained ESPNet-C models
    • decoder This directory contains the pretrained ESPNet models

Performance on the CityScape dataset

Our model ESPNet achives an class-wise mIOU of 60.336 and category-wise mIOU of 82.178 on the CityScapes test dataset and runs at

  • 112 fps on the NVIDIA TitanX (30 fps faster than ENet)
  • 9 FPS on TX2
  • With the same number of parameters as ENet, our model is 2% more accurate

Performance on the CamVid dataset

Our model achieves an mIOU of 55.64 on the CamVid test set. We used the dataset splits (train/val/test) provided here. We trained the models at a resolution of 480x360. For comparison with other models, see SegNet paper.

Note: We did not use the 3.5K dataset for training which was used in the SegNet paper.

Model mIOU Class avg.
ENet 51.3 68.3
SegNet 55.6 65.2
ESPNet 55.64 68.30

Pre-requisite

To run this code, you need to have following libraries:

  • OpenCV - We tested our code with version > 3.0.
  • PyTorch - We tested with v0.3.0
  • Python - We tested our code with Pythonv3. If you are using Python v2, please feel free to make necessary changes to the code.

We recommend to use Anaconda. We have tested our code on Ubuntu 16.04.

Citation

If ESPNet is useful for your research, then please cite our paper.

@inproceedings{mehta2018espnet,
  title={ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation},
  author={Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi},
  booktitle={ECCV},
  year={2018}
}

FAQs

Assertion error with class labels (t >= 0 && t < n_classes).

If you are getting an assertion error with class labels, then please check the number of class labels defined in the label images. You can do this as:

import cv2
import numpy as np
labelImg = cv2.imread(<label_filename.png>, 0)
unique_val_arr = np.unique(labelImg)
print(unique_val_arr)

The values inside unique_val_arr should be between 0 and total number of classes in the dataset. If this is not the case, then pre-process your label images. For example, if the label iamge contains 255 as a value, then you can ignore these values by mapping it to an undefined or background class as:

labelImg[labelImg == 255] = <undefined class id>
Owner
Sachin Mehta
Research Scientist at Apple and Affiliate Assistant Professor at UW
Sachin Mehta
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022