RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

Related tags

Deep Learningru-dolph
Overview

[Paper] [Хабр] [Model Card] [Colab] [Kaggle]

RuDOLPH 🦌 🎄 ☃️

One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP


Russian Diffusion On Language Picture Hyper-modality (RuDOLPH) is a fast and light text-image-text transformer (350M GPT-3) designed for a quick and easy fine-tuning setup for the solution of various tasks: from generating images by text description and image classification to visual question answering and more. This model demonstrates the power of Hyper-modality Transformers.

(!!!) Hyper-modality means generalized multi-modal, e.g., model that consists of two multi-modal parts: text-2-image and image-2-text becomes text and image hyper-modality model

Sparse Attention Mask

row - col - row - [last] conv

Models

Installing

pip install rudolph==0.0.1rc1

Usage

Init models

from rudalle import get_tokenizer, get_vae
from rudalle.utils import seed_everything
from rudalle.image_prompts import ImagePrompts

from rudolph.model import get_rudolph_model
from rudolph.pipelines import zs_clf, generate_codebooks, self_reranking_by_image, self_reranking_by_text, show, generate_captions, generate_texts
from rudolph import utils

device = 'cuda'
model = get_rudolph_model('350M', fp16=True, device=device)
model.to(device);
tokenizer = get_tokenizer()
vae = get_vae(dwt=False).to(device)

Text Generation

generate_texts(
    tokenizer,
    model,
    template='красивый пейзаж ',
    top_k=32, top_p=0.6, texts_num=32, bs=32, seed=42
)[:8]

[{'text': 'красивый пейзаж с лесом и рекой. вид с воздуха на сельскую местность. пейзаж с лесом и рекой. вид на горы с беспилотника', 'ppl': 82.94},
 {'text': 'красивый пейзаж в стиле реализм, автор которой сергей владимирович дорофеев', 'ppl': 112.73},
 {'text': 'красивый пейзаж с рекой и озером - обои для рабочего стола, картинки, фото', 'ppl': 125.55},
 {'text': 'красивый пейзаж с рекой и мостом через реку в сумерках', 'ppl': 170.83},
 {'text': 'красивый пейзаж с горами в тумане - горы в тумане', 'ppl': 180.72},
 {'text': 'красивый пейзаж с лесом и лугом в сумерках', 'ppl': 185.84},
 {'text': 'красивый пейзаж с озером и лесом на заднем плане', 'ppl': 199.84},
 {'text': 'красивый пейзаж с видом на горы в таиланде', 'ppl': 219.86}]

Setup for Fast Image Generation

text = 'рисунок кота'
bs, images_num = 48, 48
top_k, top_p = 512, 0.9
with torch.no_grad():
    codebooks = generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs)
    ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
    images = vae.decode(codebooks[ppl_text.argsort()[:4]])
images = torchvision.utils.make_grid(images, nrow=2)
img = torchvision.transforms.functional.to_pil_image(images)
img

Image Generation + Self Reranking

text = 'красивый пейзаж с озером и лесом на заднем плане'
images_num = 256
seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (2048, 0.99, images_num),
    (1024, 0.99, images_num),
    (1024, 0.98, images_num),
]:
    codebooks.append(generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=32))

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'зимнее время года'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'ночное время суток'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Image Prompt (like Inpainting)

text = 'лодка с алыми парусами'

images_num = 1024
bs = 32

borders = {'up': 6, 'left': 4, 'right': 6, 'down': 2}
image_prompts = ImagePrompts(pil_img, borders, vae, device, crop_first=True)

seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (1024, 0.99, images_num),
]:
    codebooks.append(
        generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs, image_prompts=image_prompts)
    )

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(
    text,
    codebooks,
    tokenizer,
    model,
    bs=bs,
)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Diffusion (TODO, see Colab)

Image Captioning + Self Reranking

texts = generate_captions(pil_img, tokenizer, model, vae, template='на картинке ', top_k=8, captions_num=128, bs=32, top_p=0.6, seed=42)
ppl_text, ppl_image = self_reranking_by_image(texts, pil_img, tokenizer, model, vae, bs=32, seed=42)
for idx in ppl_image.argsort()[:8]:
    print(f'-{texts[idx]}')

-на картинке я хочу увидеть как выглядит дом в горах
-на картинке нарисована лодка с каяком и лесом
-на картинке нарисован дом с бассейном
-на картинке – пейзаж – горы – одна из самых красивых мест на планете
-на картинке: в норвегии
-на картинке в горах
-на картинке я хочу нарисовать дом
-на картинке изображен домик на горе

-на картинке изображен рыжий пес. на фото изображен рыжий пес
-на картинке собака с длинным носом и длинным носом и короткой шерстью
-на картинке собака с длинными ушами и короткой шерстью
-на картинке изображена собака с большими глазами и длинным носом
-на картинке изображен белый медведь
-на картинке собака похожа на стаффорда и бультерьера. фото, на котором
-на картинке собака похожа на бигля и на собаку
-на картинке собака с длинными ушами и длинными ушами и

-на картинке изображена улица с светофором
-на картинке изображен дом на участке ижс
-на картинке изображена дорога с двумя автомобилями
-на картинке изображен вид с воздуха на жилой район, который находится на улице и в районе жилого комплекса
-на картинке изображен вид на здание с окнами и окнами
-на картинке изображена дорога с светофором
-на картинке изображен дом напротив станции
-на картинке изображен жилой дом

-на картинке изображен мотоцикл иж юпитер
-на картинке изображена молодая женщина с каре на фоне деревянного дома
-на картинке изображён мотоцикл
-на картинке изображен велогонщик
-на картинке изображена мотокультиватор
-на картинке изображено здание
-на картинке изображена девушка с велосипедом
-на картинке изображен мопед

Zero-Shot Image Classification using PPL

import base64
import requests
from PIL import Image
from io import BytesIO

bs4_urls = requests.get('https://raw.githubusercontent.com/sberbank-ai/ru-dolph/master/pics/pipelines/cats_vs_dogs_bs4.json').json()

f, ax = plt.subplots(2,4, figsize=(12,6))

for i, bs4_url in enumerate(bs4_urls):
    pil_img = Image.open(BytesIO(base64.b64decode(bs4_url)))
    
    classes = ['кошка', 'собака']
    preds = zs_clf(
        pil_img, 
        classes,
        model, 
        tokenizer,
        vae,
        template = 'на фото изображена', 
    )
    ax[i//4, i%4].imshow(pil_img)
    ax[i//4, i%4].set_title(preds['class'])

Linear Probe (TODO, see Colab)

Authors:

Drawing Drawing

Citation

@article{shonenkov2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  eprint        = {...},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CL}
}
@misc{github2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  howpublished  = {\url{https://github.com/sberbank-ai/ru-dolph}},
}

Supported by



Owner
Sber AI
Sber AI
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022