Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Overview

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

If you use this code for your research, please cite our paper:

@Article{informatics8020040,
AUTHOR = {Altini, Nicola and De Giosa, Giuseppe and Fragasso, Nicola and Coscia, Claudia and Sibilano, Elena and Prencipe, Berardino and Hussain, Sardar Mehboob and Brunetti, Antonio and Buongiorno, Domenico and Guerriero, Andrea and Tatò, Ilaria Sabina and Brunetti, Gioacchino and Triggiani, Vito and Bevilacqua, Vitoantonio},
TITLE = {Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN},
JOURNAL = {Informatics},
VOLUME = {8},
YEAR = {2021},
NUMBER = {2},
ARTICLE-NUMBER = {40},
URL = {https://www.mdpi.com/2227-9709/8/2/40},
ISSN = {2227-9709},
DOI = {10.3390/informatics8020040}
}

Graphical Abstract: GraphicalAbstract


Materials

Dataset can be downloaded for free at this URL.


Configuration and pre-processing

Configure the file config/paths.py according to paths in your computer. Kindly note that base_dataset_dir should be an absolute path which points to the directory which contains the subfolders with images and labels for training and validating the algorithms present in this repository.

In order to perform pre-processing, execute the following scripts in the given order.

  1. Perform Train / Test split:
python run/task0/split.py --original-training-images=OTI --original-training-labels=OTL \ 
                          --original-validation-images=OVI --original-validation-labels=OVL

Where:

  • OTI is the path with the CT scan from the original dataset (downloaded from VerSe challenge, see link above);
  • OTL is the path with the labels related to the original dataset;
  • OVI is the path where test images will be put;
  • OVL is the path where test labels will be put.
  1. Cropping the splitted datasets:
python run/task0/crop_mask.py --original-training-images=OTI --original-training-labels=OTL \ 
                              --original-validation-images=OVI --original-validation-labels=OVL

Where the arguments are the same of 1).

  1. Pre-processing the cropped datasets (see also Payer et al. pre-processing):
python run/task0/pre_processing.py

Binary Segmentation

In order to perform this stage, 3D V-Net has been exploited. The followed workflow for binary segmentation is depicted in the following figure:

BinarySegmentationWorkflowImage

Training

To perform the training, the syntax is as follows:

python run/task1/train.py --epochs=NUM_EPOCHS --batch=BATCH_SIZE --workers=NUM_WORKERS \
                          --lr=LR --val_epochs=VAL_EPOCHS

Where:

  • NUM_EPOCHS is the number of epochs for which training the CNN (we often used 500 or 1000 in our experiments);
  • BATCH_SIZE is the batch size (we often used 8 in our experiments, in order to benefit from BatchNormalization layers);
  • NUM_WORKERS is the number of workers in the data loading (see PyTorch documentation);
  • LR is the learning rate,
  • VAL_EPOCHS is the number of epochs after which performing validation during training (a checkpoint model is also saved every VAL_EPOCHS epochs).

Inference

To perform the inference, the syntax is as follows:

python run/task1/segm_bin.py --path_image_in=PATH_IMAGE_IN --path_mask_out=PATH_MASK_OUT

Where:

  • PATH_IMAGE_IN is the folder with input images;
  • PATH_MASK_OUT is the folder where to write output masks.

An example inference result is depicted in the following figure:

BinarySegmentationInferenceImage

Metrics Calculation

In order to calculate binary segmentation metrics, the syntax is as follows:

python run/task1/metrics.py

Multiclass Segmentation

The followed workflow for multiclass segmentation is depicted in the following figure:

MultiClassSegmentationWorkflow

To perform the Multiclass Segmentation (can be performed only on binary segmentation output), the syntax is as follows:

python run/task2/multiclass_segmentation.py --input-path=INPUT_PATH \
                                            --gt-path=GT_PATH \
                                            --output-path=OUTPUT_PATH \
                                            --use-inertia-tensor=INERTIA \
                                            --no-metrics=NOM

Where:

  • INPUT_PATH is the path to the folder containing the binary spine masks obtained in previous steps (or binary spine ground truth).
  • GT_PATH is the path to the folder containing ground truth labels.
  • OUTPUT_PATH is the path where to write the output multiclass masks.
  • INERTIA can be either 0 or 1 depending or not if you want to include inertia tensor in the feature set for discrminating between bodies and arches (useful for scoliosis cases); default is 0.
  • NOM can be either 0 or 1 depending or not if you want to skip the calculation of multi-Hausdorff distance and multi-ASSD for the vertebrae labelling (it can be very computationally expensive with this implementation); default is 1.

Figures highlighting the different steps involved in this stage follows:

  • Morphology MultiClassSegmentationMorphology

  • Connected Components MultiClassSegmentationConnectedComponents

  • Clustering and arch/body coupling MultiClassSegmentationClustering

  • Centroids computation MultiClassSegmentationCentroids

  • Mesh reconstruction MultiClassSegmentationMesh


Visualization of the Predictions

The base_dataset_dir folder also contains the outputs folders:

  • predTr contains the binary segmentation predictions performed on training set;
  • predTs contains the binary segmentation predictions performed on testing set;
  • predMulticlass contains the multiclass segmentation predictions and the JSON files containing the centroids' positions.

Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022