Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

Related tags

Deep Learningclin_x
Overview

CLIN-X

(CLIN-X-ES) & (CLIN-X-EN)

This repository holds the companion code for the system reported in the paper:

"CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow.

The paper wcan be found here. The code allows the users to reproduce and extend the results reported in the paper. Please cite the above paper when reporting, reproducing or extending the results.

@inproceedings{lange-etal-2021-clin-x,
      author    = {Lukas Lange and
                   Heike Adel and
                   Jannik Str{\"{o}}tgen and
                   Dietrich Klakow},
      title     = {"CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain},
      year={2021},
      url={https://arxiv.org/abs/2112.08754}
}

In case of questions, please contact the authors as listed on the paper.

Purpose of the project

This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.

The CLIN-X language models

As part of this work, two XLM-R were adapted to the clinical domain The models can be found here:

  • CLIN-X ES: Spanish clinical XLM-R (link)
  • CLIN-X EN: English clinical XLM-R (link)

The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the LICENSE_models file for details.

Prepare the conda environment

The code requires some python libraries to work:

conda create -n clin-x python==3.8.5
pip install flair==0.8 transformers==4.6.1 torch==1.8.1 scikit-learn==0.23.1 scipy==1.6.3 numpy==1.20.3 nltk tqdm seaborn matplotlib

Masked-Language-Modeling training

The models were trained using the huggingface MLM script that can be found here. The script was called as follows:

python -m torch.distributed.launch --nproc_per_node 8 run_mlm.py  \
--model_name_or_path xlm-roberta-large  \
--train_file data/spanisch_clinical_train.txt  \
--validation_file data/spanisch_clinical_valid.txt  \
--do_train   --do_eval  \
--output_dir models/xlm-roberta-large-spanisch-clinical-domain/  \
--fp16  \
--per_device_train_batch_size 4 --per_device_eval_batch_size 4  \
--save_strategy steps --save_steps 10000

Using the CLIN-X model with our propose model architecture (as reported in Table 7)

The following will describe our different scripts to reproduce the results. See each of the script files for detailed information on the input arguments.

Tokenize and split the data

python tokenize_files.py --input_path path/to/input/files/ --output_path /path/to/bio_files/
python create_data_splits.py --train_files /path/to/bio_files/ --method random --output_dir /path/to/split_files/

Train the model (using random data splits)

The following command trains on model on four splits (1,2,3,4) and uses the remaining split (5) for validation. For different split combinations adjust the list of --training_files and the --dev_file arguments accordingly.

python train_our_model_architecture.py   \
--data_path /path/to/split_files/  \
--train_files random_split_1.txt,random_split_2.txt,random_split_3.txt,random_split_4.txt  \
--dev_file random_split_5.txt  \
--model xlm-roberta-large-spanish-clinical  \
--name model_name --storage_path models

Get ensemble predictions

For all models, get the predictions on the test set as following:

python get_test_predictions.py --name models/model_name --conll_path /path/to/bio_files/ --out_path predictions/model_name/

Then, combine different models into one ensemble. Arguments: Output path + List of model predictions

python create_ensemble_data.py predictions/ensemble1 predictions/model_name/ predictions/model_name_2/ ...

Using the CLIN-X model (as reported in Table 3)

While we recommand the usage of our model architecture, the CLIN-X models can be used in many other architectures. In the paper, we compare to the standard transformer sequnece labeling models as proposed by Devlin et al. For this, we provide the train_standard_model_architecture.py script

python train_standard_model_architecture.py  \
--data_path /path/to/bio_files/  \
--model xlm-roberta-large-spanish-clinical  \
--name model_name --storage_path models

License

The CLIN-X code is open-sourced under the AGPL-3.0 license. See the LICENSE file for details.

For a list of other open source components included in CLIN-X, see the file 3rd-party-licenses.txt.

Owner
Bosch Research
Bosch Research
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022