scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

Overview

scAR

scAR single-cell omics machine learning variational autoencoders denoising

scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA assignment for scCRISPRseq, identity barcode assignment for cell indexing, protein denoising for CITE-seq, mRNA denoising for scRNAseq, and etc... It is built using probabilistic deep learning, illustrated as follows:

Table of Contents

Installation

Clone this repository,

$ git clone https://github.com/Novartis/scAR.git

Enter the cloned directory:

$ cd scAR

To install the dependencies, create a conda environment:

Please use scAR-gpu if you have an nvidia graphis card and the corresponging driver installed.

$ conda env create -f scAR-gpu.yml

or

Please use scAR-cpu if you don't have a graphis card availalble.

$ conda env create -f scAR-cpu.yml

To activate the scAR conda environment run:

$ conda activate scAR

Usage

There are two ways to run scAR.

  1. Use scAR API if you are Python users
>>> from scAR import model
>>> scarObj = model(adata.X.to_df(), empty_profile)
>>> scarObj.train()
>>> scarObj.inference()
>>> adata.layers["X_scAR_denoised"] = scarObj.native_counts
>>> adata.obsm["X_scAR_assignment"] = scarObj.feature_assignment  # feature assignment, e.g., sgRNAs, tags, and etc.. Only available in 'cropseq' mode

See the tutorials

  1. Run scAR from the command line
$ scar raw_count_matrix.pickle -t technology -e empty_profile.pickle -o output

raw_count_matrix.pickle, a pickle-formatted raw count matrix (MxN) with cells in rows and features in columns
empty_profile.pickle, a pickle-formatted feature frequencies (Nx1) in empty droplets
technology, a string, either 'scRNAseq' or 'CROPseq' or 'CITEseq'

Use scar --help command to see other optional arguments and parameters.

The output folder contains four (or five) files:

output
├── denoised_counts.pickle		# denoised count matrix
├── expected_noise_ratio.pickle	# estimated noise ratio
├── BayesFactor.pickle			# bayesian factor of ambient contamination
├── expected_native_freq.pickle	# estimated native frequencies
└── assignment.pickle			# feature assignment, e.g., sgRNAs, tags, and etc.. Gernerated under 'cropseq' mode

Dependencies

PyTorch 1.8 Python 3.8.6 torchvision 0.9.0 tqdm 4.62.3 scikit-learn 1.0.1

Resources

License

This project is licensed under the terms of License.
Copyright 2022 Novartis International AG.

Reference

If you use scAR in your research, please consider citing our manuscript,

@article {Sheng2022.01.14.476312,
	author = {Sheng, Caibin and Lopes, Rui and Li, Gang and Schuierer, Sven and Waldt, Annick and Cuttat, Rachel and Dimitrieva, Slavica and Kauffmann, Audrey and Durand, Eric and Galli, Giorgio G and Roma, Guglielmo and de Weck, Antoine},
	title = {Probabilistic modeling of ambient noise in single-cell omics data},
	elocation-id = {2022.01.14.476312},
	year = {2022},
	doi = {10.1101/2022.01.14.476312},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2022/01/14/2022.01.14.476312},
	eprint = {https://www.biorxiv.org/content/early/2022/01/14/2022.01.14.476312.full.pdf},
	journal = {bioRxiv}
}
Comments
  • Stochastic rounding to integers for downstream use in TotalVI/SCVI

    Stochastic rounding to integers for downstream use in TotalVI/SCVI

    Hi Caibin,

    I tried using scar's output as input for TotalVI/SCVI. As expected, those gave an error because the input is not integer anymore. I would suggest implementing stochastic rounding to integers as done in SoupX.

    Let me know if you're interested and I can find the time to implement it.

    Regards, Mikhael

    enhancement 
    opened by mdmanurung 9
  • BiocondaBot not triggered

    BiocondaBot not triggered

    Hi @fgypas , I made a new release v0.4.1 but bioconda somehow is not triggered upon the new release.

    In the new release, some codes related to building process have been refactored.

    • All information in setup.py (deleted) is integrated into setup.cfg.
    • An extra pyproject.toml file is added.

    I am wondering whether these affect the bioconda-recipes.

    Many thanks, Caibin

    opened by CaibinSh 7
  • New release

    New release

    Hi @fgypas ,

    I am making a new release. There are mainly three changes: 1) addition of a readthedocs; 2) code reformatting via black and pylint (pylint now can score >7, so I have increase the standard in the Action test from 0.5 to 6); 3) renaming 'scAR' to 'scar'.

    I have a couple of questions regarding whether these changes influence the bioconda recipe.

    • Will renaming package name (scAR) require modification in bioconda PR? All uppercase ('scAR') is changed to lowercase ('scar') in everywhere possible (inc. folder, environment, and etc.) But the repo name may stay as 'scAR' for a while, as renaming repo name requires permission from Nick.

    • Should we exclude the folder of datasets in the conda recipe? In addition, a folder, named 'datasets' contains >100 MBs data is added for the tutorial. Should we exclude it?

    question 
    opened by CaibinSh 3
  • Implementation in scvi-tools

    Implementation in scvi-tools

    Hi scAR team,

    I'm reaching out to gauge interest in having a mirror implementation in scvi-tools for scAR. Given the existing infrastructure in the scvi-tools repository, I was able to create a port of scAR quite easily as an external module. Of course, the implementation will link to this repository as the original and cites the paper in the docs. On top of that, the port would allow users of scvi-tools to use the pretrained scAR encoder for doublet detection using the solo model.

    Here's the pending pull request so you can check out what it would look like in the final implementation: https://github.com/scverse/scvi-tools/pull/1683

    Please let me know what you think!

    opened by ricomnl 2
  • Positive-valued denoising results for ADTs with raw 0 counts

    Positive-valued denoising results for ADTs with raw 0 counts

    Hi scar team!

    Thank you for developing this interesting package. I had a question about the resulting denoised values for CITE-seq experiments.

    I've noticed that some cells that originally have a 0 value for an ADT (as a raw count) will have a positive value (>0) for that ADT after the denoising procedure. Below, I show this case for the CD25 ADT in the 10xPBMC5k CITE-seq dataset (from the tutorial at https://scar-tutorials.readthedocs.io/en/latest/tutorials/scAR_tutorial_denoising_CITEseq.html).

    I'm a bit confused about how to best interpret these values and how they are occurring. Should these be set to 0 after the denoising procedure?

    Screen Shot 2022-05-25 at 1 16 37 AM question 
    opened by diegoalexespi 2
  • Sparsity values for mRNA decontamination?

    Sparsity values for mRNA decontamination?

    Hello,

    I was wondering what the recommendations for the sparsity value would be in denoising mRNA? Specifically if we don't know too much of the data besides UMI/nGenes in the cells etc.? I noticed its generally set at 1 for sgRNA decontamination, but what would the general recommended value be for mRNA?

    Thanks, Chang

    question 
    opened by cnk113 1
  • Number of training epochs + batch size

    Number of training epochs + batch size

    Dear scAR-Team,

    thank you for developing this package. I am currently exploring it and I would like to ask you

    1. how do you determine the number of epochs the user should use for feature_type = "mRNA"? In your tutorials you used 400 epochs and in your paper you mentioned that you fixed the epochs to 800. I applied it for various batch sizes (up to 1000) and noticed that the model is sensitive to it.

    2. I noticed that you use rather small batch-size - is scAR sensitive to the batch-size, it is just due to computational limitations or due to better perfromance?

    Thank you in advance!

    Best,

    question 
    opened by KalinNonchev 1
  • bump to version 0.3.2

    bump to version 0.3.2

    fix(*): changelog docs: adding docstring in documentation docs: adding Release notes in documentation docs: adding docstring in documentation test: adding semantic release refactor: further refactoring codes fix semantic release

    opened by CaibinSh 1
  • ask for permission of Webhooks

    ask for permission of Webhooks

    Hi @kliatsko ,

    We are currently refactoring and adding functionalities to scAR.

    Could you please grant the Webhooks permission for us to automate the documentation?

    Many thanks in advance. Best regards, Caibin on behalf of the scar team @fgypas @Tobias-Ternent @mr-nvs @AlexMTYZ.

    help wanted 
    opened by CaibinSh 1
  • New release

    New release

    • Additions of readthedocs
    • Code refactoring
    1. Renaming module names, e.g. changing "scAR" -> "scar"
    2. Renaming parameter names, e.g.

    changing "scRNAseq_tech" -> "feature_type" changing "model" -> "count_model" changing "scRNAseq_tech" -> "feature_type"

    • Black and Pylint re-formatting the code
    enhancement 
    opened by CaibinSh 1
  • Black github action

    Black github action

    Addition of black github action that runs on every push and every pull request. It shows in the stdout all the changes that need to be made (--diff), but returns exit code 0, even if errors are observed.

    opened by fgypas 1
Releases(v0.4.4)
  • v0.4.4(Aug 9, 2022)

    Documentation

    • Update dependency (03cf19e)
    • Update dependencies (9bd7f1c)
    • Update documentations (418996c)
    • Update dependencies (1bde351)
    • main: Add link to anndata and scanpy (8436e05)
    • main: Update dependencies (984df35)
    • main: Update documentation for .h5 file (2a309e0)
    • Add a link of binary installers (2faed3e)
    • Update documentations (e26a6e9)
    • Add competing methods (8564b2b)
    • scar: Add versionadded directives for parameter sparsity and round_to_int (33e35ca)
    • Update docs (a4da539)
    • Update introduction (a036b24)
    • Change readthedocs template (421e52f)
    • data_generator: Update docs (1f8f668)
    • data_generator: Re-style docs (afef9fb)
    • *: Re-style docs (2d550fa)

    Performance

    • main: Command line tool supports a new input: filtered_feature_bc_matrix.h5 (73bc13e)
    • setup: Add an error raise statement (f4fb1a8)
    Source code(tar.gz)
    Source code(zip)
  • v0.4.3(Jun 15, 2022)

    Fix

    • setup: Fix a bug to allow sample reasonable numbers of droplets (ef6f7e4)
    • main: Fix a bug in main to set default NN number (794ff17)

    Documentation

    • main: Add scanpy as dependency (252a492)

    Performance

    • main: Set a separate batchsize_infer parameter for inference (8727f04)
    • setup: Add an option of random sampling droplets to speed up calculation (ce042dd)
    • setup: Enable manupulate large-scale emptydroplets (15f1840)
    Source code(tar.gz)
    Source code(zip)
  • v0.4.2(Jun 7, 2022)

  • v0.4.1(May 19, 2022)

    What's Changed

    Feature

    • inference: add a round_to_int parameter to round the counts (float) for easy interpretation and better integration into other methods (#47) (902a2b9) (8694239)

    Build

    • setup: replace setup.py with setup.cfg and pyproject.toml (#51) (3dc999a)

    Chore

    Documentation

    • readthedocs: add scAR_logo image (#51) (c34f362)
    • tutorials: add ci=None to speed up plotting (#51) (902a2b9)

    Contributor

    @CaibinSh and @mdmanurung

    Full Changelog: https://github.com/Novartis/scar/compare/v0.4.0...v0.4.1

    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(May 5, 2022)

  • v0.3.5(May 3, 2022)

  • v0.3.4(May 1, 2022)

  • v0.3.3(May 1, 2022)

  • v0.3.1(Apr 29, 2022)

  • v0.3.0(Apr 27, 2022)

    What's Changed

    Renaming module names, e.g. changing "scAR" -> "scar" Renaming parameter names, e.g.

    "scRNAseq_tech" -> "feature_type" "model" -> "count_model" "empty_profile" -> "ambient_profile" ...

    • Black and Pylint re-formatting the code
    • New release by @CaibinSh in https://github.com/Novartis/scAR/pull/26

    Contributor

    @CaibinSh @fgypas @mr-nvs @Tobias-Ternent

    Full Changelog: https://github.com/Novartis/scAR/compare/v0.2.3...v0.3.0

    Source code(tar.gz)
    Source code(zip)
  • v0.2.3(Apr 20, 2022)

    • Add integration test
    • Black formating
    • Bump version to 0.2.3

    Contributors: @fgypas , @mr-nvs and @CaibinSh

    What's Changed

    • Develop by @CaibinSh in https://github.com/Novartis/scAR/pull/19

    Full Changelog: https://github.com/Novartis/scAR/compare/v0.2.2...v0.2.3

    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Apr 4, 2022)

    v0.2.2

    • Remove torchaudio
    • Add test data for integration tests
    • Bump version to 0.2.2

    Contributors: @CaibinSh @fgypas

    What's Changed

    • Remove torchaudio, add test data and bump version to 0.2.2 by @fgypas in https://github.com/Novartis/scAR/pull/15

    Full Changelog: https://github.com/Novartis/scAR/compare/v0.2.1-beta...v0.2.2

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1-beta(Apr 1, 2022)

    • fix a typo in scAR-gpu.yml
    • reorganise init.py files

    Contributor: @CaibinSh

    What's Changed

    • Develop by @CaibinSh in https://github.com/Novartis/scAR/pull/12

    Full Changelog: https://github.com/Novartis/scAR/compare/v0.2.0-beta...v0.2.1-beta

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0-beta(Apr 1, 2022)

    • Support for training of the model with CPUs
    • Addition of two yaml files for CPU/GPU installation
    • Refactor of setup.py and structure of the package
    • Addition of tests with pytest
    • Addition of lint checks
    • Automate build with github actions (install package and run lint checks and pytest)
    • Update documentation
    • Version 0.2.0

    Co-authored-by: @CaibinSh @mr-nvs @Tobias-Ternent @fgypas

    What's Changed

    • 0.2.0-release by @fgypas in https://github.com/Novartis/scAR/pull/11

    Full Changelog: https://github.com/Novartis/scAR/commits/v0.2.0-beta

    Source code(tar.gz)
    Source code(zip)
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023