This repository contains the scripts for downloading and validating scripts for the documents

Related tags

Deep LearningHC4
Overview

HC4: HLTCOE CLIR Common-Crawl Collection

This repository contains the scripts for downloading and validating scripts for the documents. Document ids, topics, and qrel files are in resources/hc4/

Required packages for the scripts are recorded in requirements.txt.

Topics and Qrels

Topics are stored in jsonl format and located in resources/hc4. The language(s) the topic is annotated for is recored in the language_with_qrels field. We provide the English topic title and description for all topics and human translation for the languages that it has qrels for. We also provide machine translation of them in all three languages for all topics. Narratives(field narratives) are all in English and has one entry for each of the languages that has qrels. Each topic also has an English report(field report) that is designed to record the prior knowledge the searcher has.

Qrels are stored in the classic TREC style located in resources/hc4/{lang}.

Download Documents

To download the documents from Common Crawl, please use the following command. If you plan to use HC4 with ir_datasets, please specify ~/.ir_datasets/hc4 as the storage or make a soft link to to the directory you wish to store the documents. The document ids and hashs are stored in resources/hc4/{lang}/ids*.jsonl.gz. Russian document ids are separated into 8 files.

python download_documents.py --storage ./data/ \
                             --zho ./resources/hc4/zho/ids.jsonl.gz \
                             --fas ./resources/hc4/fas/ids.jsonl.gz \
                             --rus ./resources/hc4/rus/ids.*.jsonl.gz \
                             --jobs 4 \
                             --check_hash 

If you wish to only download the documents for one language, just specify the id file for the language you wish to download. We encourage using the flag --check_hash to varify the documents downloaded match with the documents we intend to use in the collection. The full description of the arguments can be found when execute with the --help flag.

Validate

After documents are downloaded, please run the validate_hc4_documents.py to verify all documents are downloaded for each language.

python validate_hc4_documents.py --hc4_file ./data/zho/hc4_docs.jsonl \
                                 --id_file ./resources/hc4/zho/ids.jsonl.gz \
                                 --qrels ./resources/hc4/zho/*.qrels.v1-0.txt

Reference

If you use this collection, please kindly cite our dataset paper with the following bibtex entry.

@inproceedings{hc4,
	author = {Dawn Lawrie and James Mayfield and Douglas W. Oard and Eugene Yang},
	title = {{HC4}: A New Suite of Test Collections for Ad Hoc {CLIR}},
	booktitle = {Proceedings of the 44th European Conference on Information Retrieval (ECIR)},
	year = {2022}
}
Owner
JHU Human Language Technology Center of Excellence
JHU Human Language Technology Center of Excellence
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022