Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper]

Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan

This is the official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset. The code is built based on the original implementation of DPI-Net (https://github.com/YunzhuLi/DPI-Net).

Contact: [email protected] (Fish Tung)

Papers of GNS and DPI-Net:

** Learning to Simulate Complex Physics with Graph Networks ** [paper]

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia

** Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids ** [website] [paper]

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba **

Demo

Rollout from our learned model (left is ground truth, right is prediction)

Dominoes Roll Contain Drape

Installation

Clone this repo:

git clone https://github.com/htung0101/DPI-Net-p.git
cd DPI-Net-p
git submodule update --init --recursive

Install Dependencies if using Conda

For Conda users, we provide an installation script:

bash ./scripts/conda_deps.sh
pip install pyyaml

To use tensorboard for training visualization

pip install tensorboardX
pip install tensorboard

Install binvox

We use binvox to transform object mesh into particles. To use binvox, please download binvox from https://www.patrickmin.com/binvox/, put it under ./bin, and include it in your path with

export PATH=$PATH:$PWD/bin.

You might need to do chmod 777 binvox in order to execute the file.

Setup your own data path

open paths.yaml and write your own path there. You can set up different paths for different machines under different user name.

Preprocessing the Physion dataset

1) We need to convert the mesh scenes into particle scenes. This line will generate a separate folder (dpi_data_dir specified in paths.yaml) that holds data for the particle-based models

bash run_preprocessing_tdw_cheap.sh [SCENARIO_NAME] [MODE]

e.g., bash run_preprocessing_tdw_cheap.sh Dominoes train SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop, or Drape. MODE can be either train or test

You can visualize the original videos and the generated particle scenes with

python preprocessing_tdw_cheap.py --scenario Dominones --mode "train" --visualization 1

There will be videos generated under the folder vispy.

2) Then, try generate a train.txt and valid.txt files that indicates the trials you want to use for training and validaiton.

python create_train_valid.py

You can also design your specific split. Just put the trial names into one txt file.

3) For evalution on the red-hits-yellow prediciton, we can get the binary red-hits-yellow label txt file from the test dataset with

bash run_get_label_txt.sh [SCENARIO_NAME] test

This will generate a folder called labels under your output_folder dpi_data_dir. In the folder, each scenario will have a corresponding label file called [SCENARIO_NAME].txt

Training

Ok, now we are ready to start training the models.You can use the following command to train from scratch.

  • Train GNS
    bash scripts/train_gns.sh [SCENARIO_NAME] [GPU_ID]

SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop and Drape.

  • Train DPI
    bash scripts/train_dpi.sh [SCENARIO_NAME] [GPU_ID]

Our implementation is different from the original DPI paper in 2 ways: (1) our model takes as inputs relative positions as opposed to absolute positions, (2) our model is trained with injected noise. These two features are suggested in the GNS paper, and we found them to be critcial for the models to generalize well to unseen scenes.

  • Train with multiple scenarios

You can also train with more than one scenarios by adding different scenario to the argument dataf

 python train.py  --env TDWdominoes --model_name GNS --log_per_iter 1000 --training_fpt 3 --ckp_per_iter 5000 --floor_cheat 1  --dataf "Dominoes, Collide, Support, Link, Roll, Drop, Contain, Drape" --outf "all_gns"
  • Visualize your training progress

Models and model logs are saved under [out_dir]/dump/dump_TDWdominoes. You can visualize the training progress using tensorboard

tensorboard --logdir MODEL_NAME/log

Evaluation

  • Evaluate GNS
bash scripts/eval_gns.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can get the prediction txt file under eval/eval_TDWdominoes/[MODEL_NAME], e.g., test-Drape.txt, which contains results of testing the model on the Drape scenario. You can visualize the results with additional argument --vis 1.

  • Evaluate GNS-Ransac
bash scripts/eval_gns_ransac.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate DPI
bash scripts/eval_dpi.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate Models trained on multiple scenario Here we provide some example of evaluating on arbitray models trained on all scenarios.
bash eval_all_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_dpi.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_gns_ransac.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Visualize trained Models Here we provide an example of visualizing the rollout results from trained arbitray models.
bash vis_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can find the visualization under eval/eval_TDWdominoes/[MODEL_NAME]/test-[Scenario]. We should see a gif for the original RGB videos, and another gif for the side-by-side comparison of gt particle scenes and the predicted particle scenes.

Citing Physion

If you find this codebase useful in your research, please consider citing:

@inproceedings{bear2021physion,
    Title={Physion: Evaluating Physical Prediction from Vision in Humans and Machines},
    author= {Daniel M. Bear and
           Elias Wang and
           Damian Mrowca and
           Felix J. Binder and
           Hsiao{-}Yu Fish Tung and
           R. T. Pramod and
           Cameron Holdaway and
           Sirui Tao and
           Kevin A. Smith and
           Fan{-}Yun Sun and
           Li Fei{-}Fei and
           Nancy Kanwisher and
           Joshua B. Tenenbaum and
           Daniel L. K. Yamins and
           Judith E. Fan},
    url = {https://arxiv.org/abs/2106.08261},
    archivePrefix = {arXiv},
    eprint = {2106.08261},
    Year = {2021}
}
Owner
Hsiao-Yu Fish Tung
Postdoc at MIT CoCosci Lab and Stanford NeuroAILab. PhD at CMU MLD
Hsiao-Yu Fish Tung
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023