Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Overview

Self-Classifier: Self-Supervised Classification Network

Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network. Self-Classifier is a self-supervised end-to-end classification neural network. It learns labels and representations simultaneously in a single-stage end-to-end manner.

Self-Classifier architecture. Two augmented views of the same image are processed by a shared network. The cross-entropy of the two views is minimized to promote same class prediction while avoiding degenerate solutions by asserting a uniform prior. The resulting model learns representations and class labels in a single-stage end-to-end unsupervised manner. CNN: Convolutional Neural Network; FC: Fully Connected.

Setup

  1. Install Conda environment:

     conda env create -f ./environment.yml
    
  2. Install Apex with CUDA extension:

     export TORCH_CUDA_ARCH_LIST="7.0"  # see https://en.wikipedia.org/wiki/CUDA#GPUs_supported
     pip install git+git://github.com/NVIDIA/[email protected] --install-option="--cuda_ext"         
    

Training & Evaluation

Distributed training & evaluation is available via Slurm. See SBATCH scripts here.

IMPORTANT: set DATASET_PATH, EXPERIMENT_PATH and PRETRAINED_PATH to match your local paths.

Training

For training self-classifier on 4 nodes of 4 GPUs each for 800 epochs run:

    sbatch ./scripts/train.sh

Evaluation

Image Classification with Linear Models

For training a supervised linear classifier on a frozen backbone, run:

    sbatch ./scripts/eval.sh

Unsupervised Image Classification

For computing unsupervised image classification metrics (NMI: Normalized Mutual Information, AMI: Adjusted Normalized Mutual Information and ARI: Adjusted Rand-Index) and generating qualitative examples, run:

    sbatch ./scripts/cls_eval.sh

Image Classification with kNN

For running K-nearest neighbor classifier on ImageNet validation set, run:

    sbatch ./scripts/knn_eval.sh

Ablation study

For training the 100-epoch ablation study baseline, run:

    sbatch ./scripts/ablation/train_100ep.sh

For training any of the ablation study runs presented in the paper, run:

    sbatch ./scripts/ablation//.sh

Pretrained Models

Download pretrained 100/800 epochs models here.

Qualitative Examples (classes predicted by Self-Classifier on ImageNet validation set)

Low entropy classes predicted by Self-Classifier on ImageNet validation set. Images are sampled randomly from each predicted class. Note that the predicted classes capture a large variety of different backgrounds and viewpoints.

To reproduce qualitative examples, run:

    sbatch ./scripts/cls_eval.sh

License

See the LICENSE file for more details.

Citation

If you find this repository useful in your research, please cite:

@article{amrani2021self,
  title={Self-Supervised Classification Network},
  author={Amrani, Elad and Bronstein, Alex},
  journal={arXiv preprint arXiv:2103.10994},
  year={2021}
}
Owner
Elad Amrani
Machine Learning (EE) MSc Student at Technion
Elad Amrani
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022