Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Overview

Self-Classifier: Self-Supervised Classification Network

Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network. Self-Classifier is a self-supervised end-to-end classification neural network. It learns labels and representations simultaneously in a single-stage end-to-end manner.

Self-Classifier architecture. Two augmented views of the same image are processed by a shared network. The cross-entropy of the two views is minimized to promote same class prediction while avoiding degenerate solutions by asserting a uniform prior. The resulting model learns representations and class labels in a single-stage end-to-end unsupervised manner. CNN: Convolutional Neural Network; FC: Fully Connected.

Setup

  1. Install Conda environment:

     conda env create -f ./environment.yml
    
  2. Install Apex with CUDA extension:

     export TORCH_CUDA_ARCH_LIST="7.0"  # see https://en.wikipedia.org/wiki/CUDA#GPUs_supported
     pip install git+git://github.com/NVIDIA/[email protected] --install-option="--cuda_ext"         
    

Training & Evaluation

Distributed training & evaluation is available via Slurm. See SBATCH scripts here.

IMPORTANT: set DATASET_PATH, EXPERIMENT_PATH and PRETRAINED_PATH to match your local paths.

Training

For training self-classifier on 4 nodes of 4 GPUs each for 800 epochs run:

    sbatch ./scripts/train.sh

Evaluation

Image Classification with Linear Models

For training a supervised linear classifier on a frozen backbone, run:

    sbatch ./scripts/eval.sh

Unsupervised Image Classification

For computing unsupervised image classification metrics (NMI: Normalized Mutual Information, AMI: Adjusted Normalized Mutual Information and ARI: Adjusted Rand-Index) and generating qualitative examples, run:

    sbatch ./scripts/cls_eval.sh

Image Classification with kNN

For running K-nearest neighbor classifier on ImageNet validation set, run:

    sbatch ./scripts/knn_eval.sh

Ablation study

For training the 100-epoch ablation study baseline, run:

    sbatch ./scripts/ablation/train_100ep.sh

For training any of the ablation study runs presented in the paper, run:

    sbatch ./scripts/ablation//.sh

Pretrained Models

Download pretrained 100/800 epochs models here.

Qualitative Examples (classes predicted by Self-Classifier on ImageNet validation set)

Low entropy classes predicted by Self-Classifier on ImageNet validation set. Images are sampled randomly from each predicted class. Note that the predicted classes capture a large variety of different backgrounds and viewpoints.

To reproduce qualitative examples, run:

    sbatch ./scripts/cls_eval.sh

License

See the LICENSE file for more details.

Citation

If you find this repository useful in your research, please cite:

@article{amrani2021self,
  title={Self-Supervised Classification Network},
  author={Amrani, Elad and Bronstein, Alex},
  journal={arXiv preprint arXiv:2103.10994},
  year={2021}
}
Owner
Elad Amrani
Machine Learning (EE) MSc Student at Technion
Elad Amrani
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022