Fast, flexible and fun neural networks.

Overview

Brainstorm

Discontinuation Notice
Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as Tensorflow or Chainer. These and similar large projects are supported much more actively by a larger number of contributors. They provide, or plan to provide many available and planned features of brainstorm, and have several advantages, particularly in speed. In order to avoid fragmentation and waste of effort, we have decided to discontinue the brainstorm project and contribute to other frameworks and related projects such as Sacred instead. Many thanks to everyone who contributed! For us it has been a thoroughly enjoyable and educational experience.

Documentation Status PyPi Version MIT license Python Versions

Brainstorm makes working with neural networks fast, flexible and fun.

Combining lessons from previous projects with new design elements, and written entirely in Python, Brainstorm has been designed to work on multiple platforms with multiple computing backends.

Getting Started

A good point to start is the brief walkthrough of the cifar10_cnn.py example.
More documentation is in progress, and hosted on ReadTheDocs. If you wish, you can also run the data preparation scripts (data directory) and look at some basic examples (examples directory).

Status

Brainstorm is discontinued.

The currently available feature set includes recurrent (simple, LSTM, Clockwork), 2D convolution/pooling, Highway and batch normalization layers. API documentation is fairly complete and we are currently working on tutorials and usage guides.

Brainstorm abstracts computations via handlers with a consistent API. Currently, two handlers are provided: NumpyHandler for computations on the CPU (through Numpy/Cython) and PyCudaHandler for the GPU (through PyCUDA and scikit-cuda).

Installation

Here are some quick instructions for installing the latest master branch on Ubuntu.

# Install pre-requisites
sudo apt-get update
sudo apt-get install python-dev libhdf5-dev git python-pip
# Get brainstorm
git clone https://github.com/IDSIA/brainstorm
# Install
cd brainstorm
[sudo] pip install -r requirements.txt
[sudo] python setup.py install
# Build local documentation (optional)
sudo apt-get install python-sphinx
make docs
# Install visualization dependencies (optional)
sudo apt-get install graphviz libgraphviz-dev pkg-config
[sudo] pip install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

To use your CUDA installation with brainstorm:

$ [sudo] pip install -r pycuda_requirements.txt

Set location for storing datasets:

echo "export BRAINSTORM_DATA_DIR=/home/my_data_dir/" >> ~/.bashrc

Help and Support

If you have any suggestions or questions, please post to the Google group.

If you encounter any errors or problems, please let us know by opening an issue.

License

MIT License. Please see the LICENSE file.

Acknowledgements and Citation

Klaus Greff and Rupesh Srivastava would like to thank Jürgen Schmidhuber for his continuous supervision and encouragement. Funding from EU projects NASCENCE (FP7-ICT-317662) and WAY (FP7-ICT-288551) was instrumental during the development of this project. We also thank Nvidia Corporation for their donation of GPUs.

If you use Brainstorm in your research, please cite us as follows:

Klaus Greff, Rupesh Kumar Srivastava and Jürgen Schmidhuber. 2016. Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5. https://github.com/IDSIA/brainstorm

Bibtex:

@misc{brainstorm2015,
  author = {Klaus Greff and Rupesh Kumar Srivastava and Jürgen Schmidhuber},
  title = {{Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5}},
  year = {2015},
  url = {https://github.com/IDSIA/brainstorm}
}
Owner
IDSIA
Istituto Dalle Molle di studi sull'intelligenza artificiale
IDSIA
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022