Fast, flexible and fun neural networks.

Overview

Brainstorm

Discontinuation Notice
Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as Tensorflow or Chainer. These and similar large projects are supported much more actively by a larger number of contributors. They provide, or plan to provide many available and planned features of brainstorm, and have several advantages, particularly in speed. In order to avoid fragmentation and waste of effort, we have decided to discontinue the brainstorm project and contribute to other frameworks and related projects such as Sacred instead. Many thanks to everyone who contributed! For us it has been a thoroughly enjoyable and educational experience.

Documentation Status PyPi Version MIT license Python Versions

Brainstorm makes working with neural networks fast, flexible and fun.

Combining lessons from previous projects with new design elements, and written entirely in Python, Brainstorm has been designed to work on multiple platforms with multiple computing backends.

Getting Started

A good point to start is the brief walkthrough of the cifar10_cnn.py example.
More documentation is in progress, and hosted on ReadTheDocs. If you wish, you can also run the data preparation scripts (data directory) and look at some basic examples (examples directory).

Status

Brainstorm is discontinued.

The currently available feature set includes recurrent (simple, LSTM, Clockwork), 2D convolution/pooling, Highway and batch normalization layers. API documentation is fairly complete and we are currently working on tutorials and usage guides.

Brainstorm abstracts computations via handlers with a consistent API. Currently, two handlers are provided: NumpyHandler for computations on the CPU (through Numpy/Cython) and PyCudaHandler for the GPU (through PyCUDA and scikit-cuda).

Installation

Here are some quick instructions for installing the latest master branch on Ubuntu.

# Install pre-requisites
sudo apt-get update
sudo apt-get install python-dev libhdf5-dev git python-pip
# Get brainstorm
git clone https://github.com/IDSIA/brainstorm
# Install
cd brainstorm
[sudo] pip install -r requirements.txt
[sudo] python setup.py install
# Build local documentation (optional)
sudo apt-get install python-sphinx
make docs
# Install visualization dependencies (optional)
sudo apt-get install graphviz libgraphviz-dev pkg-config
[sudo] pip install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

To use your CUDA installation with brainstorm:

$ [sudo] pip install -r pycuda_requirements.txt

Set location for storing datasets:

echo "export BRAINSTORM_DATA_DIR=/home/my_data_dir/" >> ~/.bashrc

Help and Support

If you have any suggestions or questions, please post to the Google group.

If you encounter any errors or problems, please let us know by opening an issue.

License

MIT License. Please see the LICENSE file.

Acknowledgements and Citation

Klaus Greff and Rupesh Srivastava would like to thank Jürgen Schmidhuber for his continuous supervision and encouragement. Funding from EU projects NASCENCE (FP7-ICT-317662) and WAY (FP7-ICT-288551) was instrumental during the development of this project. We also thank Nvidia Corporation for their donation of GPUs.

If you use Brainstorm in your research, please cite us as follows:

Klaus Greff, Rupesh Kumar Srivastava and Jürgen Schmidhuber. 2016. Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5. https://github.com/IDSIA/brainstorm

Bibtex:

@misc{brainstorm2015,
  author = {Klaus Greff and Rupesh Kumar Srivastava and Jürgen Schmidhuber},
  title = {{Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5}},
  year = {2015},
  url = {https://github.com/IDSIA/brainstorm}
}
Owner
IDSIA
Istituto Dalle Molle di studi sull'intelligenza artificiale
IDSIA
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022