Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

Overview

PAWS-TF đŸŸ

Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS) in TensorFlow (2.4.1).

PAWS introduces a simple way to combine a very small fraction of labeled data with a comparatively larger corpus of unlabeled data during pre-training. With its approach, it sets the state-of-the-art in semi-supervised learning (as of May 2021) beating methods like SimCLRV2, Meta Pseudo Labels that too with fewer parameters and a smaller pre-training schedule. For details, I recommend checking out the original paper as well as this blog post by the authors.

This repository implements and includes all the major bits proposed in PAWS in TensorFlow. The only major difference is that the pre-training and subsequent fine-tuning weren't run for the original number of epochs (600 and 30 respectively) to save compute. I have reused the utility components for PAWS loss from the original implementation.

Dataset ⌗

The current code works with CIFAR10 and uses 4000 labeled samples (8%) during pre-training (along with the unlabeled samples).

Features ✹

  • Multi-crop augmentation strategy (originally introduced in SwAV)
  • Class stratified sampler (common in few-shot classification problems)
  • WarmUpCosine learning rate schedule (which is typical for self-supervised and semi-supervised pre-training)
  • LARS optimizer (comes from TensorFlow Model Garden)

The trunk portion (all, except the last classification layer) of a WideResNet-28-2 is used inside the encoder for CIFAR10. All the experimental configurations were followed from the Appendix C of the paper.

Setup and code structure đŸ’»

A GCP VM (n1-standard-8) with a single V100 GPU was used for executing the code.

  • paws_train.py runs the pre-training as introduced in PAWS.
  • fine_tune.py runs the fine-tuning part as suggested in Appendix C. Note that this is only required for CIFAR10.
  • nn_eval.py runs the soft nearest neighbor classification on CIFAR10 test set.

Pre-training and fine-tuning total take 1.4 hours to complete. All the logs are available in misc/logs.txt. Additionally, the indices that were used to sample the labeled examples from the CIFAR10 training set are available here.

Results 📊

Pre-training

PAWS minimizes the cross-entropy loss (as well as maximizes mean-entropy) during pre-training. This is what the training plot indicates too:

To evaluate the effectivity of the pre-training, PAWS performs soft nearest neighbor classification to report the top-1 accuracy score on a given test set.

Top-1 Accuracy

This repository gets to 73.46% top-1 accuracy on the CIFAR10 test set. Again, note that I only pre-trained for 50 epochs (as opposed to 600) and fine-tuned for 10 epochs (as opposed to 30). With the original schedule this score should be around 96.0%.

In the following PCA projection plot, we see that the embeddings of images (computed after fine-tuning) of PAWS are starting to be well separated:

Notebooks 📘

There are two Colab Notebooks:

Misc âșŸ

  • Model weights are available here for reproducibility.
  • With mixed-precision training, the performance can further be improved. I am open to accepting contributions that would implement mixed-precision training in the current code.

Acknowledgements

  • Huge amount of thanks to Mahmoud Assran (first author of PAWS) for patiently resolving my doubts.
  • ML-GDE program for providing GCP credit support.

Paper Citation

@misc{assran2021semisupervised,
      title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
      author={Mahmoud Assran and Mathilde Caron and Ishan Misra and Piotr Bojanowski and Armand Joulin and Nicolas Ballas and Michael Rabbat},
      year={2021},
      eprint={2104.13963},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Supplementary code for the paper
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Releases(v1.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, KrĂ€henbĂŒhl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, KrĂ€henbĂŒhl and Ko

Philipp KrĂ€henbĂŒhl 90 Sep 10, 2021
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022