Bilinear attention networks for visual question answering

Overview

Bilinear Attention Networks

This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entities tasks.

For the visual question answering task, our single model achieved 70.35 and an ensemble of 15 models achieved 71.84 (Test-standard, VQA 2.0). For the Flickr30k Entities task, our single model achieved 69.88 / 84.39 / 86.40 for [email protected], 5, and 10, respectively (slightly better than the original paper). For the detail, please refer to our technical report.

This repository is based on and inspired by @hengyuan-hu's work. We sincerely thank for their sharing of the codes.

Overview of bilinear attention networks

Updates

  • Bilinear attention networks using torch.einsum, backward-compatible. (12 Mar 2019)
  • Now compatible with PyTorch v1.0.1. (12 Mar 2019)

Prerequisites

You may need a machine with 4 GPUs, 64GB memory, and PyTorch v1.0.1 for Python 3.

  1. Install PyTorch with CUDA and Python 3.6.
  2. Install h5py.

WARNING: do not use PyTorch v1.0.0 due to a bug which induces underperformance.

VQA

Preprocessing

Our implementation uses the pretrained features from bottom-up-attention, the adaptive 10-100 features per image. In addition to this, the GloVe vectors. For the simplicity, the below script helps you to avoid a hassle.

All data should be downloaded to a data/ directory in the root directory of this repository.

The easiest way to download the data is to run the provided script tools/download.sh from the repository root. If the script does not work, it should be easy to examine the script and modify the steps outlined in it according to your needs. Then run tools/process.sh from the repository root to process the data to the correct format.

For now, you should manually download for the below options (used in our best single model).

We use a part of Visual Genome dataset for data augmentation. The image meta data and the question answers of Version 1.2 are needed to be placed in data/.

We use MS COCO captions to extract semantically connected words for the extended word embeddings along with the questions of VQA 2.0 and Visual Genome. You can download in here. Since the contribution of these captions is minor, you can skip the processing of MS COCO captions by removing cap elements in the target option in this line.

Counting module (Zhang et al., 2018) is integrated in this repository as counting.py for your convenience. The source repository can be found in @Cyanogenoid's vqa-counting.

Training

$ python3 main.py --use_both True --use_vg True

to start training (the options for the train/val splits and Visual Genome to train, respectively). The training and validation scores will be printed every epoch, and the best model will be saved under the directory "saved_models". The default hyperparameters should give you the best result of single model, which is around 70.04 for test-dev split.

Validation

If you trained a model with the training split using

$ python3 main.py

then you can run evaluate.py with appropriate options to evaluate its score for the validation split.

Pretrained model

We provide the pretrained model reported as the best single model in the paper (70.04 for test-dev, 70.35 for test-standard).

Please download the link and move to saved_models/ban/model_epoch12.pth (you may encounter a redirection page to confirm). The training log is found in here.

$ python3 test.py --label mytest

The result json file will be found in the directory results/.

Without Visual Genome augmentation

Without the Visual Genome augmentation, we get 69.50 (average of 8 models with the standard deviation of 0.096) for the test-dev split. We use the 8-glimpse model, the learning rate is starting with 0.001 (please see this change for the better results), 13 epochs, and the batch size of 256.

Flickr30k Entities

Preprocessing

You have to manually download Annotation and Sentence files to data/flickr30k/Flickr30kEntities.tar.gz. Then run the provided script tools/download_flickr.sh and tools/process_flickr.sh from the root of this repository, similarly to the case of VQA. Note that the image features of Flickr30k were generated using bottom-up-attention pretrained model.

Training

$ python3 main.py --task flickr --out saved_models/flickr

to start training. --gamma option does not applied. The default hyperparameters should give you approximately 69.6 for [email protected] for the test split.

Validation

Please download the link and move to saved_models/flickr/model_epoch5.pth (you may encounter a redirection page to confirm).

$ python3 evaluate.py --task flickr --input saved_models/flickr --epoch 5

to evaluate the scores for the test split.

Troubleshooting

Please check troubleshooting wiki and previous issue history.

Citation

If you use this code as part of any published research, we'd really appreciate it if you could cite the following paper:

@inproceedings{Kim2018,
author = {Kim, Jin-Hwa and Jun, Jaehyun and Zhang, Byoung-Tak},
booktitle = {Advances in Neural Information Processing Systems 31},
title = {{Bilinear Attention Networks}},
pages = {1571--1581},
year = {2018}
}

License

MIT License

Owner
Jin-Hwa Kim
Jin-Hwa Kim
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023