Learning to Reach Goals via Iterated Supervised Learning

Related tags

Deep Learninggcsl
Overview

Build Status

Vanilla GCSL

This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et al. in 2019.

In short, the paper proposes a learning framework to progressively refine a goal-conditioned imitation policy pi_k(a_t|s_t,g) based on relabeling past experiences as new training goals. In particular, the approach iteratively performs the following steps: a) sample a new goal g and collect experiences using pi_k(-|-,g), b) relabel trajectories such that reached states become surrogate goals (details below) and c) update the policy pi_(k+1) using a behavioral cloning objective. The approach is self-supervised and does not necessarily rely on expert demonstrations or reward functions. The paper shows, that training for these surrogate tuples actually leads to desirable goal-reaching behavior.

Relabeling details Let (s_t,a_t,g) be a state-action-goal tuple from an experienced trajectory and (s_(t+r),a_(t+r),g) any future state reached within the same trajectory. While the agent might have failed to reach g, we may construct the relabeled training objective (s_t,a_t,s_(t+r)), since s_(t+r) was actually reached via s_t,a_t,s_(t+1),a_(t+1)...s_(t+r).

Discussion By definition according to the paper, an optimal policy is one that reaches it goals. In this sense, previous experiences where relabeling has been performed constitute optimal self-supervised training data, regardless of the current state of the policy. Hence, old data can be reused at all times to improve the current policy. A potential drawback of this optimality definition is the absence of an efficient goal reaching behavior notion. However, the paper (and subsequent experiments) show experimentally that the resulting behavioral strategies are fairly goal-directed.

About this repository

This repository contains a vanilla, easy-to-understand PyTorch-based implementation of the proposed method and applies it to an customized Cartpole environment. In particular, the goal of the adapted Cartpole environment is to: a) maintain an upright pole (zero pole angle) and to reach a particular cart position (shown in red). A qualitative performance comparison of two agents at different training times is shown below. Training started with a random policy, no expert demonstrations were used.

1,000 steps 5,000 steps 20,000 steps

Dynamic environment experiments

Since we condition our policy on goals, nothing stops us from changing the goals over time, i.e g -> g(t). The following animation shows the agent successfully chasing a moving goal.

Parallel environments

The branch parallel-ray-envs hosts the same cartpole example but training is speed-up via ray primitives. In particular, environments rollouts are parallelized and trajectory results are incorporated on the fly. The parallel version is roughly 35% faster than the sequential one. Its currently not merged with main, since it requires a bit more code to digest.

Run the code

Install

pip install git+https://github.com/cheind/gcsl.git

and start training via

python -m gcsl.examples.cartpole train

which will save models to ./tmp/cartpoleagent_xxxxx.pth. To evaluate, run

python -m gcsl.examples.cartpole eval ./tmp/cartpolenet_20000.pth

See command line options for tuning. The above animation for the dynamic goal was created via the following command

python -m examples.cartpole eval ^
 tmp\cartpolenet_20000.pth ^
 -seed 123 ^
 -num-episodes 1 ^
 -max-steps 500 ^
 -goal-xmin "-1" ^
 -goal-xmax "1" ^
 --dynamic-goal ^
 --save-gif

References

@inproceedings{
ghosh2021learning,
title={Learning to Reach Goals via Iterated Supervised Learning},
author={Dibya Ghosh and Abhishek Gupta and Ashwin Reddy and Justin Fu and Coline Manon Devin and Benjamin Eysenbach and Sergey Levine},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=rALA0Xo6yNJ}
}
Owner
Christoph Heindl
I am a scientist at PROFACTOR/JKU working at the interface between computer vision, robotics and deep learning.
Christoph Heindl
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023