Learning to Reach Goals via Iterated Supervised Learning

Related tags

Deep Learninggcsl
Overview

Build Status

Vanilla GCSL

This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et al. in 2019.

In short, the paper proposes a learning framework to progressively refine a goal-conditioned imitation policy pi_k(a_t|s_t,g) based on relabeling past experiences as new training goals. In particular, the approach iteratively performs the following steps: a) sample a new goal g and collect experiences using pi_k(-|-,g), b) relabel trajectories such that reached states become surrogate goals (details below) and c) update the policy pi_(k+1) using a behavioral cloning objective. The approach is self-supervised and does not necessarily rely on expert demonstrations or reward functions. The paper shows, that training for these surrogate tuples actually leads to desirable goal-reaching behavior.

Relabeling details Let (s_t,a_t,g) be a state-action-goal tuple from an experienced trajectory and (s_(t+r),a_(t+r),g) any future state reached within the same trajectory. While the agent might have failed to reach g, we may construct the relabeled training objective (s_t,a_t,s_(t+r)), since s_(t+r) was actually reached via s_t,a_t,s_(t+1),a_(t+1)...s_(t+r).

Discussion By definition according to the paper, an optimal policy is one that reaches it goals. In this sense, previous experiences where relabeling has been performed constitute optimal self-supervised training data, regardless of the current state of the policy. Hence, old data can be reused at all times to improve the current policy. A potential drawback of this optimality definition is the absence of an efficient goal reaching behavior notion. However, the paper (and subsequent experiments) show experimentally that the resulting behavioral strategies are fairly goal-directed.

About this repository

This repository contains a vanilla, easy-to-understand PyTorch-based implementation of the proposed method and applies it to an customized Cartpole environment. In particular, the goal of the adapted Cartpole environment is to: a) maintain an upright pole (zero pole angle) and to reach a particular cart position (shown in red). A qualitative performance comparison of two agents at different training times is shown below. Training started with a random policy, no expert demonstrations were used.

1,000 steps 5,000 steps 20,000 steps

Dynamic environment experiments

Since we condition our policy on goals, nothing stops us from changing the goals over time, i.e g -> g(t). The following animation shows the agent successfully chasing a moving goal.

Parallel environments

The branch parallel-ray-envs hosts the same cartpole example but training is speed-up via ray primitives. In particular, environments rollouts are parallelized and trajectory results are incorporated on the fly. The parallel version is roughly 35% faster than the sequential one. Its currently not merged with main, since it requires a bit more code to digest.

Run the code

Install

pip install git+https://github.com/cheind/gcsl.git

and start training via

python -m gcsl.examples.cartpole train

which will save models to ./tmp/cartpoleagent_xxxxx.pth. To evaluate, run

python -m gcsl.examples.cartpole eval ./tmp/cartpolenet_20000.pth

See command line options for tuning. The above animation for the dynamic goal was created via the following command

python -m examples.cartpole eval ^
 tmp\cartpolenet_20000.pth ^
 -seed 123 ^
 -num-episodes 1 ^
 -max-steps 500 ^
 -goal-xmin "-1" ^
 -goal-xmax "1" ^
 --dynamic-goal ^
 --save-gif

References

@inproceedings{
ghosh2021learning,
title={Learning to Reach Goals via Iterated Supervised Learning},
author={Dibya Ghosh and Abhishek Gupta and Ashwin Reddy and Justin Fu and Coline Manon Devin and Benjamin Eysenbach and Sergey Levine},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=rALA0Xo6yNJ}
}
Owner
Christoph Heindl
I am a scientist at PROFACTOR/JKU working at the interface between computer vision, robotics and deep learning.
Christoph Heindl
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023