Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Overview

Discretization Robust Correspondence Benchmark

One challenge of machine learning on 3D surfaces is that there are many different representations/samplings ("discretizations") which all encode the same underlying shape---consider e.g. different triangle meshes of a surface. We expect models to generalize across these representations; the purpose of this benchmark is to measure generalization of 3D machine learning models across different discretizations

This benchmark contains test meshes of human bodies, derived from the MPI-FAUST dataset, remeshed/resampled according to several policies. The task is to predict correspondence, defined by predicting the nearest vertex index on the template mesh. We intentionally provide test data only. The intent of this benchmark is that methods train on the ordinary FAUST template meshes, then evaluate on this dataset. This measures the ability of the method to generalize to new, unseen discretizations of shapes.

example image of data

From: DiffusionNet: Discretization Agnostic Learning on Surfaces, Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov, conditionally accepted to ACM ToG 2021.

Please cite this benchmark as:

@article{sharp2021diffusion,
  author = {Sharp, Nicholas and Attaiki, Souhaib and Crane, Keenan and Ovsjanikov, Maks},
  title = {DiffusionNet: Discretization Agnostic Learning on Surfaces},
  journal = {ACM Trans. Graph.},
  volume = {XX},
  number = {X},
  year = {20XX},
  publisher = {ACM},
  address = {New York, NY, USA},
}

Remeshing/sampling policies

  • iso Meshes are isotropically remeshed, to have a roughly uniform distribution of vetices, with approximately equilateral triangles
  • qes Meshes are first refined to have many more vertices, then simplified back to approximately 2x the original resolution using Quadric Error Simplification
  • mc Meshes are volumetrically reconstructed, and a mesh is extracted via the marching cubes algorithm.
  • dense Meshes are refined to have nonuniform density by choosing 5 random faces, refining the mesh in the vicinity of the face, then isotropically remeshing.
  • cloud A point cloud, with normals, sampled uniformly from the mesh

In this repository

  • data/
    • iso/
      • tr_reg_iso_080.ply FAUST test mesh 80, remeshed according to the iso strategy
      • tr_reg_iso_080.txt Ground-truth correspondence indices, per-vertex
      • ...
      • tr_reg_iso_099.ply
      • tr_reg_iso_099.txt
    • qes/
      • tr_reg_qes_080.ply
      • tr_reg_qes_080.txt
      • ...
    • mc/
      • tr_reg_mc_080.ply
      • tr_reg_mc_080.txt
      • ...
    • dense/
      • tr_reg_dense_080.ply
      • tr_reg_dense_080.txt
      • ...
    • cloud/
      • tr_reg_cloud_080.ply A sampled point cloud from FAUST test mesh 80, with normals
      • tr_reg_cloud_080.txt Ground-truth correspondence indices, per-point
      • ...
  • scripts/ Meshlab & Python scripts which were used to generate the data.

Notes about the data

  • The meshes are not necessarily high quality! In particular, the mc meshes have coincident vertices and degenerate leftover from the marching cubes process. Such artifacts are a common occurence in real data.

Benchmark Task

This benchmark is designed for template correspondence via vertex index prediction. That is, for each vertex (resp., point) in a test shape, we predict the corresponding nearest vertex on a template mesh. The FAUST template mesh has 6890 vertices, so this is essentially a segmentation problem with classes from [0, 6899]. Note that although popular in past work, this categorical formulation is surely not the best notion of correspondence between surfaces. However, it is very simple, and exposes a tendancy to overfit to discretization, which makes it a good choice for this benchmark.

The first 80 original MPI-FAUST template meshes should be used as training data: i.e. tr_reg_000.ply-tr_reg_079.ply. The last 20 shapes are taken as the test set, and remeshed/resampled for the purpose of this benchmark. These original meshes are already deformed templates, so the ground truth vertex labels are simply [0,1,2,3,4...]. We do not host the original data here; you must download it from http://faust.is.tue.mpg.de/.

After training on the first 80 original FAUST meshes, we evaluate on the test meshes, predicting corresponding vertices. Error is measured by the geodesic distance along the template mesh between the predicted vertex and the ground-truth vertex. (% of vertices predicted exactly correct is not really a meaningful metric.) See this repo for a full example of training and eval scripts.

Papers using this dataset

(create a pull request to add more!)

License

The scripts which generate the data are available for any use under an MIT license (C) Nicholas Sharp 2021.

The remeshed/sampled meshes are derived from the MPI-FAUST dataset, governed by this license (which allows derivative works).

Owner
Nicholas Sharp
3D geometry researcher: computer graphics/vision, geometry processing, and 3D machine learning
Nicholas Sharp
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021