RL Algorithms with examples in Python / Pytorch / Unity ML agents

Overview

Reinforcement Learning Project

This project was created to make it easier to get started with Reinforcement Learning. It now contains:

Getting Started

Install Basic Dependencies

To set up your python environment to run the code in the notebooks, follow the instructions below.

  • If you're on Windows I recommend installing Miniforge. It's a minimal installer for Conda. I also recommend using the Mamba package manager instead of Conda. It works almost the same as Conda, but only faster. There's a cheatsheet of Conda commands which also work in Mamba. To install Mamba, use this command:
conda install mamba -n base -c conda-forge 
  • Create (and activate) a new environment with Python 3.6 or later. I recommend using Python 3.9:

    • Linux or Mac:
    mamba create --name rl39 python=3.9 numpy
    source activate rl39
    • Windows:
    mamba create --name rl39 python=3.9 numpy
    activate rl39
  • Install PyTorch by following instructions on Pytorch.org. For example, to install PyTorch on Windows with GPU support, use this command:

mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Install additional packages:
mamba install jupyter notebook matplotlib
python -m ipykernel install --user --name rl39 --display-name "rl39"
  • Change the kernel to match the rl39 environment by using the drop-down menu Kernel -> Change kernel inside Jupyter Notebook.

Install Unity Machine Learning Agents

Note: In order to run the notebooks on Windows, it's not necessary to install the Unity Editor, because I have provided the standalone executables of the environments for you.

Unity ML Agents is the software that we use for the environments. The agents that we create in Python can interact with these environments. Unity ML Agents consists of several parts:

  • The Unity Editor is used for creating environments. To install:

    • Install Unity Hub.
    • Install the latest version of Unity by clicking on the green button Unity Hub on the download page.

    To start the Unity editor you must first have a project:

    • Start the Unity Hub.
    • Click on "Projects"
    • Create a new dummy project.
    • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.
  • The Unity ML-Agents Toolkit. Download the latest release of the source code or use the Git command: git clone --branch release_18 https://github.com/Unity-Technologies/ml-agents.git.

  • The Unity ML Agents package is used inside the Unity Editor. Please read the instructions for installation.

  • The mlagents Python package is used as a bridge between Python and the Unity editor (or standalone executable). To install, use this command: python -m pip install mlagents==0.27.0. Please note that there's no conda package available for this.

Install an IDE for Python

For Windows, I would recommend using PyCharm (my choice), or Visual Studio Code. Inside those IDEs you can use the Conda environment you have just created.

Creating a custom Unity executable

Load the examples project

The Unity ML-Agents Toolkit contains several example environments. Here we will load them all inside the Unity editor:

  • Start the Unity Hub.
  • Click on "Projects"
  • Add a project by navigating to the Project folder inside the toolkit.
  • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.

Create a 3D Ball executable

The 3D Ball example contains 12 environments in one, but this doesn't work very well in the Python API. The main problem is that there's no way to reset each environment individually. Therefore, we will remove the other 11 environments in the editor:

  • Load the 3D Ball scene, by going to the project window and navigating to Examples -> 3DBall -> Scenes-> 3DBall
  • In the Hierarchy window select the other 11 3DBall objects and delete them, so that only the 3DBall object remains.

Next, we will build the executable:

  • Go to File -> Build Settings
  • In the Build Settings window, click Build
  • Navigate to notebooks folder and add 3DBall to the folder name that is used for the build.

Instructions for running the notebooks

  1. Download the Unity executables for Windows. In case you're not on Windows, you have to build the executables yourself by following the instructions above.
  2. Place the Unity executable folders in the same folder as the notebooks.
  3. Load a notebook with Jupyter notebook. (The command to start Jupyter notebook is jupyter notebook)
  4. Follow further instructions in the notebook.
You might also like...
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

TensorRT examples (Jetson, Python/C++)(object detection)
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

Releases(v1.0.0)
Owner
Rogier Wachters
Rogier Wachters
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022