RL Algorithms with examples in Python / Pytorch / Unity ML agents

Overview

Reinforcement Learning Project

This project was created to make it easier to get started with Reinforcement Learning. It now contains:

Getting Started

Install Basic Dependencies

To set up your python environment to run the code in the notebooks, follow the instructions below.

  • If you're on Windows I recommend installing Miniforge. It's a minimal installer for Conda. I also recommend using the Mamba package manager instead of Conda. It works almost the same as Conda, but only faster. There's a cheatsheet of Conda commands which also work in Mamba. To install Mamba, use this command:
conda install mamba -n base -c conda-forge 
  • Create (and activate) a new environment with Python 3.6 or later. I recommend using Python 3.9:

    • Linux or Mac:
    mamba create --name rl39 python=3.9 numpy
    source activate rl39
    • Windows:
    mamba create --name rl39 python=3.9 numpy
    activate rl39
  • Install PyTorch by following instructions on Pytorch.org. For example, to install PyTorch on Windows with GPU support, use this command:

mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Install additional packages:
mamba install jupyter notebook matplotlib
python -m ipykernel install --user --name rl39 --display-name "rl39"
  • Change the kernel to match the rl39 environment by using the drop-down menu Kernel -> Change kernel inside Jupyter Notebook.

Install Unity Machine Learning Agents

Note: In order to run the notebooks on Windows, it's not necessary to install the Unity Editor, because I have provided the standalone executables of the environments for you.

Unity ML Agents is the software that we use for the environments. The agents that we create in Python can interact with these environments. Unity ML Agents consists of several parts:

  • The Unity Editor is used for creating environments. To install:

    • Install Unity Hub.
    • Install the latest version of Unity by clicking on the green button Unity Hub on the download page.

    To start the Unity editor you must first have a project:

    • Start the Unity Hub.
    • Click on "Projects"
    • Create a new dummy project.
    • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.
  • The Unity ML-Agents Toolkit. Download the latest release of the source code or use the Git command: git clone --branch release_18 https://github.com/Unity-Technologies/ml-agents.git.

  • The Unity ML Agents package is used inside the Unity Editor. Please read the instructions for installation.

  • The mlagents Python package is used as a bridge between Python and the Unity editor (or standalone executable). To install, use this command: python -m pip install mlagents==0.27.0. Please note that there's no conda package available for this.

Install an IDE for Python

For Windows, I would recommend using PyCharm (my choice), or Visual Studio Code. Inside those IDEs you can use the Conda environment you have just created.

Creating a custom Unity executable

Load the examples project

The Unity ML-Agents Toolkit contains several example environments. Here we will load them all inside the Unity editor:

  • Start the Unity Hub.
  • Click on "Projects"
  • Add a project by navigating to the Project folder inside the toolkit.
  • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.

Create a 3D Ball executable

The 3D Ball example contains 12 environments in one, but this doesn't work very well in the Python API. The main problem is that there's no way to reset each environment individually. Therefore, we will remove the other 11 environments in the editor:

  • Load the 3D Ball scene, by going to the project window and navigating to Examples -> 3DBall -> Scenes-> 3DBall
  • In the Hierarchy window select the other 11 3DBall objects and delete them, so that only the 3DBall object remains.

Next, we will build the executable:

  • Go to File -> Build Settings
  • In the Build Settings window, click Build
  • Navigate to notebooks folder and add 3DBall to the folder name that is used for the build.

Instructions for running the notebooks

  1. Download the Unity executables for Windows. In case you're not on Windows, you have to build the executables yourself by following the instructions above.
  2. Place the Unity executable folders in the same folder as the notebooks.
  3. Load a notebook with Jupyter notebook. (The command to start Jupyter notebook is jupyter notebook)
  4. Follow further instructions in the notebook.
You might also like...
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

TensorRT examples (Jetson, Python/C++)(object detection)
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

Releases(v1.0.0)
Owner
Rogier Wachters
Rogier Wachters
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022