Face recognition. Redefined.

Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


Logo

FaceFinder

Use a powerful CNN to identify faces in images!

TABLE OF CONTENTS
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgements

About The Project

screenshot

There is lots of face recognition software out there on github, but most of it focuses on speed over accuracy and uses models such as 'hog'. However, FaceFinder is one of the most powerful face recognition programs which uses a very large CNN to make accurate predictions.

Here's why:

  • Several modern technologies make use of face recognition and its importance in the world is constantly increasing.
  • You shouldn't have to train a full neural net of your own every time you want to perform face recognition.
  • FaceFinder contains code which runs approximately 3.7 times faster than average.

If you're making an app of your own and want it to perform face recognition, this is your go-to option.

A list of commonly used resources that I find helpful are listed in the acknowledgements.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

  • Latest versions of pip and setuptools
    pip install --upgrade pip setuptools
  • Conda
    pip install conda
  • Dlib
    python -m conda install dlib
  • Required packages
    pip install -r requirements.txt

Installation

  1. Ensure you're in your home directory:

    cd ~

    When you clone the repository it should show up as a subfolder in your home folder. You can change its location whenever you want.

  2. Clone the repo:

    git clone https://github.com/BleepLogger/FaceFinder

    Clone the repository by its URL.

  3. Navigate to cloned repository:

    cd FaceFinder

    Commands that you run should be run within the cloned repository.

  4. To run the program, execute tasks.py with command line arguments:

    python Scripts/tasks.py --data-dir '<data folder path>' --input_image '<path to image>'

    Replace the and with the real paths. They're just placeholders.

Usage

To run it from the command line, you will need to pass two arguments.

python Scripts/tasks.py --data-dir '<data folder path>' --input_image '<path to image>'

Replace the and with the real paths.

This program needs one directory containing different images labelled with whose face is present in the image. And then, you need an input image which will be classified.

So if you want to check whether an image is an image of your mom or your dad, then this is how you could do it:

  1. Create a directory called dataset/ in the FaceFinder directory in ~.
  2. Create two subdirectories, dataset/mom and dataset/dad.
  3. Add images of your mother to the mom subdir and your father to your dad subdir.
  4. Click an image of either your mom or your dad, the one you want to classify. Title it 2bclassified.jpg and put it in the FaceFinder directory.
  5. Run this command:
    python Scripts/tasks.py --data-dir 'dataset/' --input_image '2bclassified.jpg'

Then, after about 20 minutes of processing (6-7 if you have a GPU), a window will open up displaying your image, with a box highlighting the detected face and a box of text saying either "Mom" or saying "Dad".

You will have to install dlib from source if you want your GPU to be utilized. Look up the instructions to do that.

Roadmap

See the open issues for a list of proposed features (and known issues).

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Kanav Bhasin - @kanav_bhasin - [email protected]

Project Link: https://github.com/BleepLogger/FaceFinder


# Thank you!
Owner
BleepLogger
App/system developer specializing in C, Python, and JavaScript. Writes unreadable but very fast code. Skills include AI/ML, Web Scraping, and The Cloud.
BleepLogger
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022