Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

Overview

The Stem Cell Hypothesis

Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

Installation

Run the following setup script. Feel free to install a GPU-enabled PyTorch (torch>=1.6.0).

python3 -m venv env
source env/bin/activate
ln -sf "$(which python2)" env/bin/python
pip install -e .

Data Pre-processing

Download OntoNotes 5 (LDC2013T19.tgz) and put it into the following directory:

mkdir -p ~/.elit/thirdparty/catalog.ldc.upenn.edu/LDC2013T19/
cp LDC2013T19.tgz ~/.elit/thirdparty/catalog.ldc.upenn.edu/LDC2013T19/LDC2013T19.tgz

That's all. ELIT will automatically do the rest for you the first time you run the training script.

Experiments

Here we demonstrate how to experiment with BERT-base but feel free to replace the transformer and task name in the script path for other experiments. Our scripts are grouped by transformers and tasks with clear semantics.

Single Task Learning

The following script will train STL-POS with BERT-base and evaluate its performance on the test set:

python3 stem_cell_hypothesis/en_bert_base/single/pos.py

Multi-Task Learning

The following script will train MTL-5 with BERT-base and evaluate its performance on the test set:

python3 stem_cell_hypothesis/en_bert_base/joint/all.py

Pruning Experiments

The following script will train STL-POS-DP with BERT-base and evaluate its performance on the test set:

python3 stem_cell_hypothesis/en_bert_base/gate/pos.py

You can monitor the pruning process in real time via tensorboard:

tensorboard --logdir=data/model/mtl/ontonotes_bert_base_en/gated/pos/0/runs --samples_per_plugin images=1000

which will show how the heads gradually get claimed in http://localhost:6007/#images:

gates

Once 3 runs are finished, you can visualize the overlap of head utilization across runs via:

python3 stem_cell_hypothesis/en_bert_base/gate/vis_gate_overlap_rgb.py

which will generate the following figure (1a):

Similarly, Figure 1g is generated with stem_cell_hypothesis/en_bert_base/gate/vis_gate_overlap_tasks_gray.py.

15-models-average

Probing Experiments

Once a model is trained, you can probe its representations via the scripts in stem_cell_hypothesis/en_bert_base/head. For example, to probe STL-POS performance, run:

python3 stem_cell_hypothesis/en_bert_base/head/pos.py
python3 stem_cell_hypothesis/en_bert_base/head/vis/pos.py

which generates Figure 4:

pos-probe

You may need to manually change the path and update new results in the scripts.

To probe the unsupervised BERT performance for a single task, e.g., SRL, run:

python3 stem_cell_hypothesis/en_bert_base/head/srl_dot.py

which generates Figure 3:

srl-probe-static

Although not included in the paper due to page limitation, experiments of Chinese, BERT-large, ALBERT, etc. are uploaded to stem_cell_hypothesis. Feel free to run them for your interest.

Citation

If you use this repository in your research, please kindly cite our EMNLP2021 paper:

@inproceedings{he-choi-2021-stem,
    title = "The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders",
    author = "He, Han and Choi, Jinho D.",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.451",
    pages = "5555--5577",
    abstract = "Multi-task learning with transformer encoders (MTL) has emerged as a powerful technique to improve performance on closely-related tasks for both accuracy and efficiency while a question still remains whether or not it would perform as well on tasks that are distinct in nature. We first present MTL results on five NLP tasks, POS, NER, DEP, CON, and SRL, and depict its deficiency over single-task learning. We then conduct an extensive pruning analysis to show that a certain set of attention heads get claimed by most tasks during MTL, who interfere with one another to fine-tune those heads for their own objectives. Based on this finding, we propose the Stem Cell Hypothesis to reveal the existence of attention heads naturally talented for many tasks that cannot be jointly trained to create adequate embeddings for all of those tasks. Finally, we design novel parameter-free probes to justify our hypothesis and demonstrate how attention heads are transformed across the five tasks during MTL through label analysis.",
}
Owner
Emory NLP
NLP Research Laboratory at Emory University
Emory NLP
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022