Playable Video Generation

Overview

Playable Video Generation




Playable Video Generation
Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci

Paper: ArXiv
Supplementary: Website
Demo: Try it Live

Abstract: This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety.

Overview



Figure 1. Illustration of the proposed CADDY model for playable video generation.


Given a set of completely unlabeled videos, we jointly learn a set of discrete actions and a video generation model conditioned on the learned actions. At test time, the user can control the generated video on-the-fly providing action labels as if he or she was playing a videogame. We name our method CADDY. Our architecture for unsupervised playable video generation is composed by several components. An encoder E extracts frame representations from the input sequence. A temporal model estimates the successive states using a recurrent dynamics network R and an action network A which predicts the action label corresponding to the current action performed in the input sequence. Finally, a decoder D reconstructs the input frames. The model is trained using reconstruction as the main driving loss.

Requirements

We recommend the use of Linux and of one or more CUDA compatible GPUs. We provide both a Conda environment and a Dockerfile to configure the required libraries.

Conda

The environment can be installed and activated with:

conda env create -f env.yml

conda activate video-generation

Docker

Use the Dockerfile to build the docker image:

docker build -t video-generation:1.0 .

Run the docker image mounting the root directory to /video-generation in the docker container:

docker run -it --gpus all --ipc=host -v /path/to/directory/video-generation:/video-generation video-generation:1.0 /bin/bash

Preparing Datasets

BAIR

Coming soon

Atari Breakout

Download the breakout_160_ours.tar.gz archive from Google Drive and extract it under the data folder.

Tennis

The Tennis dataset is automatically acquired from Youtube by running

./get_tennis_dataset.sh

This requires an installation of youtube-dl (Download). Please run youtube-dl -U to update the utility to the latest version. The dataset will be created at data/tennis_v4_256_ours.

Custom Datasets

Custom datasets can be created from a user-provided folder containing plain videos. Acquired video frames are sampled at the specified resolution and framerate. ffmpeg is used for the extraction and supports multiple input formats. By default only mp4 files are acquired.

python -m dataset.acquisition.convert_video_directory --video_directory --output_directory --target_size [--fps --video_extension --processes ]

As an example the following command transforms all mp4 videos in the tmp/my_videos directory into a 256x256px dataset sampled at 10fps and saves it in the data/my_videos folder python -m dataset.acquisition.convert_video_directory --video_directory tmp/my_videos --output_directory data/my_videos --target_size 256 256 --fps 10

Using Pretrained Models

Pretrained models in .pth.tar format are available for all the datasets and can be downloaded at the following link: Google Drive

Please place each directory under the checkpoints folder. Training and inference scripts automatically make use of the latest.pth.tar checkpoint when present in the checkpoints subfolder corresponding to the configuration in use.

Playing

When a latest.pth.tar checkpoint is present under the checkpoints folder corresponding to the current configuration, the model can be interactively used to generate videos with the following commands:

  • Bair: python play.py --config configs/01_bair.yaml

  • Breakout: python play.py configs/breakout/02_breakout.yaml

  • Tennis: python play.py --config configs/03_tennis.yaml

A full screen window will appear and actions can be provided using number keys in the range [1, actions_count]. Number key 0 resets the generation process.

The inference process is lightweight and can be executed even in browser as in our Live Demo.

Training

The models can be trained with the following commands:

python train.py --config configs/

The training process generates multiple files under the results and checkpoint directories a sub directory with the name corresponding to the one specified in the configuration file. In particular, the folder under the results directory will contain an images folder showing qualitative results obtained during training. The checkpoints subfolder will contain regularly saved checkpoints and the latest.pth.tar checkpoint representing the latest model parameters.

The training can be completely monitored through Weights and Biases by running before execution of the training command: wandb init

Training the model in full resolution on our datasets required the following GPU resources:

  • BAIR: 4x2080Ti 44GB
  • Breakout: 1x2080Ti 11GB
  • Tennis: 2x2080 16GB

Lower resolution versions of the model can be trained with a single 8GB GPU.

Evaluation

Evaluation requires two steps. First, an evaluation dataset must be built. Second, evaluation is carried out on the evaluation dataset. To build the evaluation dataset please issue:

python build_evaluation_dataset.py --config configs/

The command creates a reconstruction of the test portion of the dataset under the results//evaluation_dataset directory. To run evaluation issue:

python evaluate_dataset.py --config configs/evaluation/configs/

Evaluation results are saved under the evaluation_results directory the folder specified in the configuration file with the name data.yml.

Owner
Willi Menapace
Hi, I'm Willi Menapace, Ph.D Student and passionate deep learning practitioner. Here you can find some of the projects I am allowed to publish.
Willi Menapace
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023