Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Overview

Hello from magnus

Magnus provides four capabilities for data teams:

  • Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

  • Run log store: A place to store run logs for reporting or re-running older runs. Along with capturing the status of execution, the run logs also capture code identifiers (commits, docker image digests etc), data hashes and configuration settings for reproducibility and audit.

  • Data Catalogs: A way to pass data between nodes of the graph during execution and also serves the purpose of versioning the data used by a particular run.

  • Secrets: A framework to provide secrets/credentials at run time to the nodes of the graph.

Design decisions:

  • Easy to extend: All the four capabilities are just definitions and can be implemented in many flavors.

    • Compute execution plan: You can choose to run the DAG on your local computer, in containers of local computer or off load the work to cloud providers or translate the DAG to AWS step functions or Argo workflows.

    • Run log Store: The actual implementation of storing the run logs could be in-memory, file system, S3, database etc.

    • Data Catalogs: The data files generated as part of a run could be stored on file-systems, S3 or could be extended to fit your needs.

    • Secrets: The secrets needed for your code to work could be in dotenv, AWS or extended to fit your needs.

  • Pipeline as contract: Once a DAG is defined and proven to work in local or some environment, there is absolutely no code change needed to deploy it to other environments. This enables the data teams to prove the correctness of the dag in dev environments while infrastructure teams to find the suitable way to deploy it.

  • Reproducibility: Run log store and data catalogs hold the version, code commits, data files used for a run making it easy to re-run an older run or debug a failed run. Debug environment need not be the same as original environment.

  • Easy switch: Your infrastructure landscape changes over time. With magnus, you can switch infrastructure by just changing a config and not code.

Magnus does not aim to replace existing and well constructed orchestrators like AWS Step functions or argo but complements them in a unified, simple and intuitive way.

Documentation

More details about the project and how to use it available here.

Installation

pip

magnus is a python package and should be installed as any other.

pip install magnus

Example Run

To give you a flavour of how magnus works, lets create a simple pipeline.

Copy the contents of this yaml into getting-started.yaml.


!!! Note

The below execution would create a folder called 'data' in the current working directory. The command as given should work in linux/macOS but for windows, please change accordingly.


> data/data.txt # For Linux/macOS next: success catalog: put: - "*" success: type: success fail: type: fail">
dag:
  description: Getting started
  start_at: step parameters
  steps:
    step parameters:
      type: task
      command_type: python-lambda
      command: "lambda x: {'x': int(x) + 1}"
      next: step shell
    step shell:
      type: task
      command_type: shell
      command: mkdir data ; env >> data/data.txt # For Linux/macOS
      next: success
      catalog:
        put:
          - "*"
    success:
      type: success
    fail:
      type: fail

And let's run the pipeline using:

 magnus execute --file getting-started.yaml --x 3

You should see a list of warnings but your terminal output should look something similar to this:

", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.530138", "end_time": "2022-01-18 11:46:08.530561", "duration": "0:00:00.000423", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [] }, "step shell": { "name": "step shell", "internal_name": "step shell", "status": "SUCCESS", "step_type": "task", "message": "", "mock": false, "code_identities": [ { "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c", "code_identifier_type": "git", "code_identifier_dependable": false, "code_identifier_url": " ", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.576522", "end_time": "2022-01-18 11:46:08.588158", "duration": "0:00:00.011636", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [ { "name": "data.txt", "data_hash": "8f25ba24e56f182c5125b9ede73cab6c16bf193e3ad36b75ba5145ff1b5db583", "catalog_relative_path": "20220118114608/data.txt", "catalog_handler_location": ".catalog", "stage": "put" } ] }, "success": { "name": "success", "internal_name": "success", "status": "SUCCESS", "step_type": "success", "message": "", "mock": false, "code_identities": [ { "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c", "code_identifier_type": "git", "code_identifier_dependable": false, "code_identifier_url": " ", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.639563", "end_time": "2022-01-18 11:46:08.639680", "duration": "0:00:00.000117", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [] } }, "parameters": { "x": 4 }, "run_config": { "executor": { "type": "local", "config": {} }, "run_log_store": { "type": "buffered", "config": {} }, "catalog": { "type": "file-system", "config": {} }, "secrets": { "type": "do-nothing", "config": {} } } }">
{
    "run_id": "20220118114608",
    "dag_hash": "ce0676d63e99c34848484f2df1744bab8d45e33a",
    "use_cached": false,
    "tag": null,
    "original_run_id": "",
    "status": "SUCCESS",
    "steps": {
        "step parameters": {
            "name": "step parameters",
            "internal_name": "step parameters",
            "status": "SUCCESS",
            "step_type": "task",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.530138",
                    "end_time": "2022-01-18 11:46:08.530561",
                    "duration": "0:00:00.000423",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": []
        },
        "step shell": {
            "name": "step shell",
            "internal_name": "step shell",
            "status": "SUCCESS",
            "step_type": "task",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.576522",
                    "end_time": "2022-01-18 11:46:08.588158",
                    "duration": "0:00:00.011636",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": [
                {
                    "name": "data.txt",
                    "data_hash": "8f25ba24e56f182c5125b9ede73cab6c16bf193e3ad36b75ba5145ff1b5db583",
                    "catalog_relative_path": "20220118114608/data.txt",
                    "catalog_handler_location": ".catalog",
                    "stage": "put"
                }
            ]
        },
        "success": {
            "name": "success",
            "internal_name": "success",
            "status": "SUCCESS",
            "step_type": "success",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.639563",
                    "end_time": "2022-01-18 11:46:08.639680",
                    "duration": "0:00:00.000117",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": []
        }
    },
    "parameters": {
        "x": 4
    },
    "run_config": {
        "executor": {
            "type": "local",
            "config": {}
        },
        "run_log_store": {
            "type": "buffered",
            "config": {}
        },
        "catalog": {
            "type": "file-system",
            "config": {}
        },
        "secrets": {
            "type": "do-nothing",
            "config": {}
        }
    }
}

You should see that data folder being created with a file called data.txt in it. This is according to the command in step shell.

You should also see a folder .catalog being created with a single folder corresponding to the run_id of this run.

To understand more about the input and output, please head over to the documentation.

Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022