PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Overview

Learning Character-Agnostic Motion for Motion Retargeting in 2D

We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019.

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA CuDNN
  • Python 3
  • PyTorch 0.4

Getting Started

Installation

  • Clone this repo

    git clone https://github.com/ChrisWu1997/2D-Motion-Retargeting.git
    cd 2D-Motion-Retargeting
  • Install dependencies

    pip install -r requirements.txt

    Note that the imageio package requires ffmepg and there are several options to install ffmepg. For those who are using anaconda, run conda install ffmpeg -c conda-forge is the simplest way.

Run demo examples

We provide pretrained models and several video examples, along with their OpenPose outputs. After run, the results (final joint positions + videos) will be saved in the output folder.

  • Run the full model to combine motion, skeleton, view angle from three input videos:

    python predict.py -n full --model_path ./model/pretrained_full.pth -v1 ./examples/tall_man -v2 ./examples/small_man -v3 ./examples/workout_march -h1 720 -w1 720 -h2 720 -w2 720 -h3 720 -w3 720 -o ./outputs/full-demo --max_length 120

    Results will be saved in ./outputs/full-demo:

  • Run the full model to do interpolation between two input videos. For example, to keep body attribute unchanged, and interpolate in motion and view axis:

    python interpolate.py --model_path ./model/pretrained_full.pth -v1 ./examples/model -v2 ./examples/tall_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/interpolate-demo.mp4 --keep_attr body --form matrix --nr_sample 5 --max_length 120

    You will get a matrix of videos that demonstrates the interpolation results:

  • Run two encoder model to transfer motion and skeleton between two input videos:

    python predict.py -n skeleton --model_path ./model/pretrained_skeleton.pth -v1 ./examples/tall_man -v2 ./examples/small_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/skeleton-demo --max_length 120
  • Run two encoder model to transfer motion and view angle between two input videos:

    python predict.py -n view --model_path ./model/pretrained_view.pth -v1 ./examples/tall_man -v2 ./examples/model -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/view-demo --max_length 120

Use your own videos

To run our models with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Train from scratch

Prepare Data

  • Download Mixamo Data

    For the sake of convenience, we pack the Mixamo Data that we use. To download it, see Google Drive or Baidu Drive (8jq3). After downloading, extract it into ./mixamo_data.

    NOTE: Our Mixamo dataset only covers a part of the whole collections provided by the Mixamo website. If you want to collect Mixamo Data by yourself, you can follow the our guide here. The downloaded files are of fbx format, to convert it into json/npy (joints 3d position), you can use our script dataset/fbx2joints3d.py(requires blender 2.79).

  • Preprocess the downloaded data

    python ./dataset/preprocess.py
    

Train

  • Train the full model (with three encoders) on GPU:

    python train.py -n full -g 0
    

    Further more, you can select which structure to train and which loss to use through command line arguments:

    -n : Which structure to train. 'skeleton' / 'view' for 2 encoders system to transfer skeleton/view. 'full' for full system with 3 encoders.

    —disable_triplet: To disable triplet loss. By default, triplet loss is used.

    —use_footvel_loss: To use foot velocity loss.

Citation

If you use this code for your research, please cite our paper:

@article{aberman2019learning,
  author = {Aberman, Kfir and Wu, Rundi and Lischinski, Dani and Chen, Baoquan and Cohen-Or, Daniel},
  title = {Learning Character-Agnostic Motion for Motion Retargeting in 2D},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {38},
  number = {4},
  pages = {75},
  year = {2019},
  publisher = {ACM}
}

Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022