A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Overview

Minimal implementation of diffusion models

A minimal implementation of diffusion models with the goal to democratize the use of synthetic data from these models.

Check out the experimental results section for quantitative numbers on quality of synthetic data and FAQs for a broader discussion. We experiments with nine commonly used datasets, and released all assets, including models and synthetic data for each of them.

Requirements: pip install scipy opencv-python. We assume torch and torchvision are already installed.

Structure

main.py  - Train or sample from a diffusion model.
unets.py - UNet based network architecture for diffusion model.
data.py  - Common datasets and their metadata.
──  scripts
     └── train.sh  - Training scripts for all datasets.
     └── sample.sh - Sampling scripts for all datasets.

Training

Use the following command to train the diffusion model on four gpus.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py \
  --arch UNet --dataset cifar10 --class-cond --epochs 500

We provide the exact script used for training in ./scripts/train.sh.

Sampling

We reuse main.py for sampling but with the --sampling-only only flag. Use the following command to sample 50K images from a pretrained diffusion model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py \
  --arch UNet --dataset cifar10 --class-cond --sampling-only --sampling-steps 250 \
  --num-sampled-images 50000 --pretrained-ckpt path_to_pretrained_model

We provide the exact script used for sampling in ./scripts/sample.sh.

How useful is synthetic data from diffusion models? 🤔

Takeaway: Across all datasets, training only on synthetic data suffice to achieve a competitive classification score on real data.

Goal: Our goal is to not only measure photo-realism of synthetic images but also measure how well synthetic images cover the data distribution, i.e., how diverse is synthetic data. Note that a generative model, commonly GANs, can generate high-quality images, but still fail to generate diverse images.

Choice of datasets: We use nine commonly used datasets in image recognition. The goal was to multiple datasets was to capture enough diversity in terms of the number of samples, the number of classes, and coarse vs fine-grained classification. In addition, by using a common setup across datasets, we can test the success of diffusion models without any assumptions about the dataset.

Diffusion model: For each dataset, we train a class-conditional diffusion model. We choose a modest size network and train it for a limited number of hours on a 4xA4000 cluster, as highlighted by the training time in the table below. Next, we sample 50,000 synthetic images from the diffusion model.

Metric to measure synthetic data quality: We train a ResNet50 classifier on only real images and another one on only synthetic images and measure their accuracy on the validation set of real images. This metric is also referred to as classification accuracy score and it provides us a way to measure both quality and diversity of synthetic data in a unified manner across datasets.

Released assets for each dataset: Pre-trained Diffusion models, 50,000 synthetic images for each dataset, and downstream clasifiers trained with real-only or synthetic-only dataset.

Table 1: Training images and classes refer to the number of training images and the number of classes in the dataset. Training time refers to the time taken to train the diffusion model. Real only is the test set accuracy of ResNet-50 model trained on only real training images. Synthetic accuracy is the test accuracy of the ResNet-50 model trained on only 50K synthetic images.

Dataset Training images Classes Training time (hours) Real only Synthetic only
MNIST 60,000 10 2.1 99.6 99.0
MNIST-M 60,000 10 5.3 99.3 97.3
CIFAR-10 50,000 10 10.7 93.8 87.3
Skin Cancer* 33126 2 19.1 69.7 64.1
AFHQ 14630 3 8.6 97.9 98.7
CelebA 109036 4 12.8 90.1 88.9
Standford Cars 8144 196 7.4 33.7 76.6
Oxford Flowers 2040 102 6.0 29.3 76.3
Traffic signs 39252 43 8.3 96.6 96.1

* Due to heavy class imbalance, we use AUROC to measure classification performance.

Note: Except for CIFAR10, MNIST, MNIST-M, and GTSRB, we use 64x64 image resolution for all datasets. The key reason to use a lower resolution was to reduce the computational resources needed to train the diffusion model.

Discussion: Across most datasets training only on synthetic data achieves competitive performance with training on real data. It shows that the synthetic data 1) has high-quality images, otherwise the model wouldn't have learned much from it 2) high coverage of distribution, otherwise, the model trained on synthetic data won't do well on the whole test set. Even more, the synthetic dataset has a unique advantage: we can easily generate a very large amount of it. This difference is clearly visible for the low-data regime (flowers and cars dataset), where training on synthetic data (50K images) achieves much better performance than training on real data, which has less than 10K images. A more principled investigation of sample complexity, i.e., performance vs number-of-synthetic-images is available in one of my previous papers (fig. 9).

FAQs

Q. Why use diffusion models?
A. This question is super broad and has multiple answers. 1) They are super easy to train. Unlike GANs, there are no training instabilities in the optimization process. 2) The mode coverage of the diffusion models is excellent where at the same time the generated images are quite photorealistic. 3) The training pipeline is also consistent across datasets, i.e., no assumption about the data. For all datasets above, the only parameter we changed was the amount of training time.

Q. Is synthetic data from diffusion models much different from other generative models, in particular GANs?
A. As mentioned in the previous answer, synthetic data from diffusion models have much higher coverage than GANs, while having a similar image quality. Check out the this previous paper by Prafulla Dhariwal and Alex Nichol where they provide extensive results supporting this claim. In the regime of robust training, you can find a more quantitive comparison of diffusion models with multiple GANs in one of my previous papers.

Q. Why classification accuracy on some datasets is so low (e.g., flowers), even when training with real data?
A. Due to many reasons, current classification numbers aren't meant to be competitive with state-of-the-art. 1) We don't tune any hyperparameters across datasets. For each dataset, we train a ResNet50 model with 0.1 learning rate, 1e-4 weight decay, 0.9 momentum, and cosine learning rate decay. 2) Instead of full resolution (commonly 224x224), we use low-resolution images (64x64), which makes classification harder.

Q. Using only synthetic data, how to further improve the test accuracy on real data?
A. Diffusion models benefit tremendously from scaling of the training setup. One can do so by increasing the network width (base_width) and training the network for more epochs (2-4x).

References

This implementation was originally motivated by the original implmentation of diffusion models by Jonathan Ho. I followed the recent PyTorch implementation by OpenAI for common design choices in diffusion models.

The experiments to test out the potential of synthetic data from diffusion models are inspired by one of my previous work. We found that using synthetic data from the diffusion model alone surpasses benefits from multiple algorithmic innovations in robust training, which is one of the simple yet extremely hard problems to solve for neural networks. The next step is to repeat the Table-1 experiments, but this time with robust training.

Visualizing real and synthetic images

For each data, we plot real images on the left and synthetic images on the right. Each row corresponds to a unique class while classes for real and synthetic data are identical.

Light     Dark

MNIST

Light     Dark

MNIST-M

Light     Dark

CIFAR-10

Light     Dark

GTSRB

Light     Dark

Celeb-A

Light     Dark

AFHQ

Light     Dark

Cars

Light     Dark

Flowers

Light     Dark

Melanoma (Skin cancer)

Light     Dark

Note: Real images for each dataset follow the same license as their respective dataset.

Owner
Vikash Sehwag
PhD candidate at Princeton University. Interested in problems at the intersection of Security, Privacy, and Machine leanring.
Vikash Sehwag
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022