A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Overview

Minimal implementation of diffusion models

A minimal implementation of diffusion models with the goal to democratize the use of synthetic data from these models.

Check out the experimental results section for quantitative numbers on quality of synthetic data and FAQs for a broader discussion. We experiments with nine commonly used datasets, and released all assets, including models and synthetic data for each of them.

Requirements: pip install scipy opencv-python. We assume torch and torchvision are already installed.

Structure

main.py  - Train or sample from a diffusion model.
unets.py - UNet based network architecture for diffusion model.
data.py  - Common datasets and their metadata.
──  scripts
     └── train.sh  - Training scripts for all datasets.
     └── sample.sh - Sampling scripts for all datasets.

Training

Use the following command to train the diffusion model on four gpus.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py \
  --arch UNet --dataset cifar10 --class-cond --epochs 500

We provide the exact script used for training in ./scripts/train.sh.

Sampling

We reuse main.py for sampling but with the --sampling-only only flag. Use the following command to sample 50K images from a pretrained diffusion model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py \
  --arch UNet --dataset cifar10 --class-cond --sampling-only --sampling-steps 250 \
  --num-sampled-images 50000 --pretrained-ckpt path_to_pretrained_model

We provide the exact script used for sampling in ./scripts/sample.sh.

How useful is synthetic data from diffusion models? 🤔

Takeaway: Across all datasets, training only on synthetic data suffice to achieve a competitive classification score on real data.

Goal: Our goal is to not only measure photo-realism of synthetic images but also measure how well synthetic images cover the data distribution, i.e., how diverse is synthetic data. Note that a generative model, commonly GANs, can generate high-quality images, but still fail to generate diverse images.

Choice of datasets: We use nine commonly used datasets in image recognition. The goal was to multiple datasets was to capture enough diversity in terms of the number of samples, the number of classes, and coarse vs fine-grained classification. In addition, by using a common setup across datasets, we can test the success of diffusion models without any assumptions about the dataset.

Diffusion model: For each dataset, we train a class-conditional diffusion model. We choose a modest size network and train it for a limited number of hours on a 4xA4000 cluster, as highlighted by the training time in the table below. Next, we sample 50,000 synthetic images from the diffusion model.

Metric to measure synthetic data quality: We train a ResNet50 classifier on only real images and another one on only synthetic images and measure their accuracy on the validation set of real images. This metric is also referred to as classification accuracy score and it provides us a way to measure both quality and diversity of synthetic data in a unified manner across datasets.

Released assets for each dataset: Pre-trained Diffusion models, 50,000 synthetic images for each dataset, and downstream clasifiers trained with real-only or synthetic-only dataset.

Table 1: Training images and classes refer to the number of training images and the number of classes in the dataset. Training time refers to the time taken to train the diffusion model. Real only is the test set accuracy of ResNet-50 model trained on only real training images. Synthetic accuracy is the test accuracy of the ResNet-50 model trained on only 50K synthetic images.

Dataset Training images Classes Training time (hours) Real only Synthetic only
MNIST 60,000 10 2.1 99.6 99.0
MNIST-M 60,000 10 5.3 99.3 97.3
CIFAR-10 50,000 10 10.7 93.8 87.3
Skin Cancer* 33126 2 19.1 69.7 64.1
AFHQ 14630 3 8.6 97.9 98.7
CelebA 109036 4 12.8 90.1 88.9
Standford Cars 8144 196 7.4 33.7 76.6
Oxford Flowers 2040 102 6.0 29.3 76.3
Traffic signs 39252 43 8.3 96.6 96.1

* Due to heavy class imbalance, we use AUROC to measure classification performance.

Note: Except for CIFAR10, MNIST, MNIST-M, and GTSRB, we use 64x64 image resolution for all datasets. The key reason to use a lower resolution was to reduce the computational resources needed to train the diffusion model.

Discussion: Across most datasets training only on synthetic data achieves competitive performance with training on real data. It shows that the synthetic data 1) has high-quality images, otherwise the model wouldn't have learned much from it 2) high coverage of distribution, otherwise, the model trained on synthetic data won't do well on the whole test set. Even more, the synthetic dataset has a unique advantage: we can easily generate a very large amount of it. This difference is clearly visible for the low-data regime (flowers and cars dataset), where training on synthetic data (50K images) achieves much better performance than training on real data, which has less than 10K images. A more principled investigation of sample complexity, i.e., performance vs number-of-synthetic-images is available in one of my previous papers (fig. 9).

FAQs

Q. Why use diffusion models?
A. This question is super broad and has multiple answers. 1) They are super easy to train. Unlike GANs, there are no training instabilities in the optimization process. 2) The mode coverage of the diffusion models is excellent where at the same time the generated images are quite photorealistic. 3) The training pipeline is also consistent across datasets, i.e., no assumption about the data. For all datasets above, the only parameter we changed was the amount of training time.

Q. Is synthetic data from diffusion models much different from other generative models, in particular GANs?
A. As mentioned in the previous answer, synthetic data from diffusion models have much higher coverage than GANs, while having a similar image quality. Check out the this previous paper by Prafulla Dhariwal and Alex Nichol where they provide extensive results supporting this claim. In the regime of robust training, you can find a more quantitive comparison of diffusion models with multiple GANs in one of my previous papers.

Q. Why classification accuracy on some datasets is so low (e.g., flowers), even when training with real data?
A. Due to many reasons, current classification numbers aren't meant to be competitive with state-of-the-art. 1) We don't tune any hyperparameters across datasets. For each dataset, we train a ResNet50 model with 0.1 learning rate, 1e-4 weight decay, 0.9 momentum, and cosine learning rate decay. 2) Instead of full resolution (commonly 224x224), we use low-resolution images (64x64), which makes classification harder.

Q. Using only synthetic data, how to further improve the test accuracy on real data?
A. Diffusion models benefit tremendously from scaling of the training setup. One can do so by increasing the network width (base_width) and training the network for more epochs (2-4x).

References

This implementation was originally motivated by the original implmentation of diffusion models by Jonathan Ho. I followed the recent PyTorch implementation by OpenAI for common design choices in diffusion models.

The experiments to test out the potential of synthetic data from diffusion models are inspired by one of my previous work. We found that using synthetic data from the diffusion model alone surpasses benefits from multiple algorithmic innovations in robust training, which is one of the simple yet extremely hard problems to solve for neural networks. The next step is to repeat the Table-1 experiments, but this time with robust training.

Visualizing real and synthetic images

For each data, we plot real images on the left and synthetic images on the right. Each row corresponds to a unique class while classes for real and synthetic data are identical.

Light     Dark

MNIST

Light     Dark

MNIST-M

Light     Dark

CIFAR-10

Light     Dark

GTSRB

Light     Dark

Celeb-A

Light     Dark

AFHQ

Light     Dark

Cars

Light     Dark

Flowers

Light     Dark

Melanoma (Skin cancer)

Light     Dark

Note: Real images for each dataset follow the same license as their respective dataset.

Owner
Vikash Sehwag
PhD candidate at Princeton University. Interested in problems at the intersection of Security, Privacy, and Machine leanring.
Vikash Sehwag
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Matthew Colbrook 1 Apr 08, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022