General-purpose program synthesiser

Overview

DeepSynth

General-purpose program synthesiser.

This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-based Search".

Authors: Anonymous

Figure

Abstract

We consider the problem of automatically constructing computer programs from input-output examples. We investigate how to augment probabilistic and neural program synthesis methods with new search algorithms, proposing a framework called distribution-based search. Within this framework, we introduce two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove certain optimality guarantees for both methods, show how they integrate with probabilistic and neural techniques, and demonstrate how they can operate at scale across parallel compute environments. Collectively these findings offer theoretical and applied studies of search algorithms for program synthesis that integrate with recent developments in machine-learned program synthesizers.

Usage

Installation

# clone this repository
git clone https://github.com/nathanael-fijalkow/DeepSynth.git

# create your new env
conda create -n deep_synth python>=3.7 
# activate it
conda activate deep_synth
# install pip
yes | conda install pip
# install this package and the dependencies
pip install torch cython tqdm numpy matplotlib
pip install git+https://github.com/MaxHalford/vose
# For flashfill dataset
pip install sexpdata
# If you want to do the parallel experiments
pip install ray

# You are good to go :)
# To test your installation you can run the following tests:
python unit_test_algorithms.py
python unit_test_programs.py
python unit_test_algorithms.py
python unit_test_predictions.py
# Only if you installed ray
python unit_test_parallel.py

File structure

./
        Algorithms/      # the search algorithms + parallel pipeline
        DSL/             # DSL: dreamcoder, deepcoder, flashfill
        list_dataset/    # DreamCoder dataset in pickle format
        Predictions/     # all files related to the ANN for prediction of the grammars 

Reproducing the experiments

All of the files mentioned in this section are located in the root folder and follow this pattern run_*_experiments*.py.

Here is a short summary of each experiment:

  • run_random_PCFG_search.py produce a list of all programs generated under Xsec of search time by all algorithms.
  • run_random_PCFG_search_parallel.py same experiment but iwth the grammar_splitter and multiple CPUs.
  • run_experiments_ .py try to find solutions using an ANN to predict the grammar and for each algorithm logs the search data for the corresponding . The suffix parallel can also be found indicating that the algorithms are run in parallel. The semantics experiments in the paper used a trained model thatn can be obtained using produce_network.py or directly in the repository. The results can be plotted using plot_results_semantics.py.

Note that for the DreamCoder experiment in our paper, we did not use the cached evaluation of HeapSearch, this can be reproduced by setting use_heap_search_cached_eval to False in run_experiment.py.

Quick guide to using ANN to predict a grammar

Is it heavily inspired by the file model_loader.py.

First we create a prediction model:

############################
##### Hyperparameters ######
############################

max_program_depth = 4

size_max = 10  # maximum number of elements in a list (input or output)
nb_inputs_max = 2  # maximum number of inputs in an IO
lexicon = list(range(30))  # all elements of a list must be from lexicon
# only useful for VariableSizeEncoding
encoding_output_dimension = 30  # fixing the dimension

embedding_output_dimension = 10
# only useful for RNNEmbedding
number_layers_RNN = 1

size_hidden = 64

############################
######### PCFG #############
############################

deepcoder = DSL(semantics, primitive_types)
type_request = Arrow(List(INT), List(INT))
deepcoder_cfg = deepcoder.DSL_to_CFG(
    type_request, max_program_depth=max_program_depth)
deepcoder_pcfg = deepcoder_cfg.CFG_to_Uniform_PCFG()

############################
###### IO ENCODING #########
############################

# IO = [[I1, ...,Ik], O]
# I1, ..., Ik, O are lists
# IOs = [IO1, IO2, ..., IOn]
# task = (IOs, program)
# tasks = [task1, task2, ..., taskp]

#### Specification: #####
# IOEncoder.output_dimension: size of the encoding of one IO
# IOEncoder.lexicon_size: size of the lexicon
# IOEncoder.encode_IO: outputs a tensor of dimension IOEncoder.output_dimension
# IOEncoder.encode_IOs: inputs a list of IO of size n
# and outputs a tensor of dimension n * IOEncoder.output_dimension

IOEncoder = FixedSizeEncoding(
    nb_inputs_max=nb_inputs_max,
    lexicon=lexicon,
    size_max=size_max,
)


# IOEncoder = VariableSizeEncoding(
#     nb_inputs_max = nb_inputs_max,
#     lexicon = lexicon,
#     output_dimension = encoding_output_dimension,
#     )

############################
######### EMBEDDING ########
############################

# IOEmbedder = SimpleEmbedding(
#     IOEncoder=IOEncoder,
#     output_dimension=embedding_output_dimension,
#     size_hidden=size_hidden,
# )
 
IOEmbedder = RNNEmbedding(
    IOEncoder=IOEncoder,
    output_dimension=embedding_output_dimension,
    size_hidden=size_hidden,
    number_layers_RNN=number_layers_RNN,
)

#### Specification: #####
# IOEmbedder.output_dimension: size of the output of the embedder
# IOEmbedder.forward_IOs: inputs a list of IOs
# and outputs the embedding of the encoding of the IOs
# which is a tensor of dimension
# (IOEmbedder.input_dimension, IOEmbedder.output_dimension)
# IOEmbedder.forward: same but with a batch of IOs

############################
######### MODEL ############
############################

model = RulesPredictor(
    cfg=deepcoder_cfg,
    IOEncoder=IOEncoder,
    IOEmbedder=IOEmbedder,
    size_hidden=size_hidden,
)

# model = LocalRulesPredictor(
#     cfg = deepcoder_cfg,
#     IOEncoder = IOEncoder,
#     IOEmbedder = IOEmbedder,
#     # size_hidden = size_hidden,
#     )

Now we can produce the grammars:

dsl = DSL(semantics, primitive_types)
batched_grammars = model(batched_examples)
if isinstance(model, RulesPredictor):
    batched_grammars = model.reconstruct_grammars(batched_grammars)

Quick guide to train a neural network

Just copy the model initialisation used in your experiment in the file produce_network.py or use the ones provided that correspond to our experiments. You can change the hyperparameters, then run the script. A .weights file should appear at the root folder. This will train a neural network on random generated programs as described in Appendix F in the paper.

Quick guide to using a search algorithm for a grammar

There are already functions for that in run_experiment.py, namely run_algorithm and run_algorithm_parallel. The former enables you to run the specified algorithm in a single thread while the latter in parallel with a grammar splitter. To produce a is_correct function you can use make_program_checker in experiment_helper.py.

How to download the DeepCoder dataset?

First, download the archive from here (Deepcoder repo): https://storage.googleapis.com/deepcoder/dataset.tar.gz in a folder deepcoder_dataset at the root of DeepSynth. Then you simply need to:

gunzip dataset.tar.gz
tar -xf dataset.tar

You should see a few JSON files.

You might also like...
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

VGGFace2-HQ - A high resolution face dataset for face editing purpose
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Scikit-learn compatible estimation of general graphical models
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Comments
  • Questions about the installation instructions.

    Questions about the installation instructions.

    Hi Nathanaël,

    I started to review your JOSS submission and have some questions about the installation part in the README.

    Quote the version specification

    conda create -n deep_synth python>=3.7 
    

    should be changed to the following, otherwise, it's not accepted by some shells such as zsh.

    conda create -n deep_synth "python>=3.7"
    

    How to install PyTorch

    I would recommend providing the compatible PyTorch version requirements and some potential commands to install the compatible versions (such as different CUDA/CPU versions). Since conda env is already created, one can also install PyTorch via conda.

    > pip install torch cython tqdm numpy matplotlib
    
    ERROR: Could not find a version that satisfies the requirement torch (from versions: none)
    ERROR: No matching distribution found for torch
    

    Missing pip package

    pip install scipy  # required by unit_tests_algorithms.py
    

    Correct the script names

    python unit_test_algorithms.py
    python unit_test_programs.py
    python unit_test_algorithms.py
    python unit_test_predictions.py
    # Only if you installed ray
    python unit_test_parallel.py
    

    The script name should be corrected.

    python unit_tests_algorithms.py
    python unit_tests_programs.py
    python unit_tests_algorithms.py
    python unit_tests_predictions.py
    

    Missing file for unit_test_parallel.py.

    Fail to run the tests

    > python unit_tests_algorithms.py
    Traceback (most recent call last):
      File "/myapps/research/synthesis/DeepSynth/unit_tests_algorithms.py", line 11, in <module>
        from dsl import DSL
      File "/myapps/research/synthesis/DeepSynth/dsl.py", line 6, in <module>
        from cfg import CFG
      File "/myapps/research/synthesis/DeepSynth/cfg.py", line 4, in <module>
        from pcfg_logprob import LogProbPCFG
      File "/myapps/research/synthesis/DeepSynth/pcfg_logprob.py", line 7, in <module>
        import vose
      File "/home/aplusplus/anaconda3/envs/deep_synth/lib/python3.9/site-packages/vose/__init__.py", line 1, in <module>
        from .sampler import Sampler
      File "vose/sampler.pyx", line 1, in init vose.sampler
    ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 232 from C header, got 216 from PyObject
    

    A specific package version may be needed.

    Best, Shengwei

    opened by njuaplusplus 5
Releases(joss-release)
  • joss-release(Oct 13, 2022)

    What's Changed

    • More documentation and addition of guide to use the software.
    • Install requirements by @bzz in https://github.com/nathanael-fijalkow/DeepSynth/pull/3
    Source code(tar.gz)
    Source code(zip)
Owner
Nathanaël Fijalkow
Computer science researcher
Nathanaël Fijalkow
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022