Deep Face Recognition in PyTorch

Overview

Face Recognition in PyTorch

License Build Status

By Alexey Gruzdev and Vladislav Sovrasov

Introduction

A repository for different experimental Face Recognition models such as CosFace, ArcFace, SphereFace, SV-Softmax, etc.

Contents

  1. Installation
  2. Preparation
  3. Train/Eval
  4. Models
  5. Face Recognition Demo

Installation

  1. Create and activate virtual python environment
bash init_venv.sh
. venv/bin/activate

Preparation

  1. For Face Recognition training you should download VGGFace2 data. We will refer to this folder as $VGGFace2_ROOT.
  2. For Face Recognition evaluation you need to download LFW data and LFW landmarks. Place everything in one folder, which will be $LFW_ROOT.

Train/Eval

  1. Go to $FR_ROOT folder
cd $FR_ROOT/
  1. To start training FR model:
python train.py --train_data_root $VGGFace2_ROOT/train/ --train_list $VGGFace2_ROOT/meta/train_list.txt
--train_landmarks  $VGGFace2_ROOT/bb_landmark/ --val_data_root  $LFW_ROOT/lfw/ --val_list $LFW_ROOT/pairs.txt  
--val_landmarks $LFW_ROOT/lfw_landmark.txt --train_batch_size 200  --snap_prefix mobilenet_256 --lr 0.35
--embed_size 256 --model mobilenet --device 1
  1. To evaluate FR snapshot (let's say we have MobileNet with 256 embedding size trained for 300k):
 python evaluate_lfw.py --val_data_root $LFW_ROOT/lfw/ --val_list $LFW_ROOT/pairs.txt
 --val_landmarks $LFW_ROOT/lfw_landmark.txt --snap /path/to/snapshot/mobilenet_256_300000.pt --model mobilenet --embed_size 256

Configuration files

Besides passing all the required parameters via command line, the training script allows to read them from a yaml configuration file. Each line of such file should contain a valid description of one parameter in the yaml fromat. Example:

#optimizer parameters
lr: 0.4
train_batch_size: 256
#loss options
margin_type: cos
s: 30
m: 0.35
#model parameters
model: mobilenet
embed_size: 256
#misc
snap_prefix: MobileFaceNet
devices: [0, 1]
#datasets
train_dataset: vgg
train_data_root: $VGGFace2_ROOT/train/
#... and so on

Path to the config file can be passed to the training script via command line. In case if any other arguments were passed before the config, they will be overwritten.

python train.py -m 0.35 @./my_config.yml #here m can be overwritten with the value from my_config.yml

Models

  1. You can download pretrained model from fileshare as well - https://download.01.org/openvinotoolkit/open_model_zoo/training_toolbox_pytorch/models/fr/Mobilenet_se_focal_121000.pt
cd $FR_ROOT
python evaluate_lfw.py --val_data_root $LFW_ROOT/lfw/ --val_list $LFW_ROOT/pairs.txt --val_landmarks $LFW_ROOT/lfw_landmark.txt
--snap /path/to/snapshot/Mobilenet_se_focal_121000.pt --model mobilenet --embed_size 256
  1. You should get the following output:
I1114 09:33:37.846870 10544 evaluate_lfw.py:242] Accuracy/Val_same_accuracy mean: 0.9923
I1114 09:33:37.847019 10544 evaluate_lfw.py:243] Accuracy/Val_diff_accuracy mean: 0.9970
I1114 09:33:37.847069 10544 evaluate_lfw.py:244] Accuracy/Val_accuracy mean: 0.9947
I1114 09:33:37.847179 10544 evaluate_lfw.py:245] Accuracy/Val_accuracy std dev: 0.0035
I1114 09:33:37.847229 10544 evaluate_lfw.py:246] AUC: 0.9995
I1114 09:33:37.847305 10544 evaluate_lfw.py:247] Estimated threshold: 0.7241

Demo

  1. For setting up demo, please go to Face Recognition demo with OpenVINO Toolkit
Owner
Alexey Gruzdev
Going Deeper with Deep Learning
Alexey Gruzdev
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022