Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Overview

Blockchain-enabled Server-less Federated Learning

Repository containing the files used to reproduce the results of the publication "Blockchain-enabled Server-less Federated Learning".

''BibTeX'' citation:

@article{wilhelmi2021blockchain,
  title={Blockchain-enabled Server-less Federated Learning},
  author={Wilhelmi, Francesc, Giupponi, Lorenza and Dini, Paolo},
  journal={arXiv preprint arXiv:2112.07938
},
  year={2021}
}

Table of Contents

Authors

Abstract

Motivated by the heterogeneous nature of devices participating in large-scale Federated Learning (FL) optimization, we focus on an asynchronous server-less FL solution empowered by Blockchain (BC) technology. In contrast to mostly adopted FL approaches, which assume synchronous operation, we advocate an asynchronous method whereby model aggregation is done as clients submit their local updates. The asynchronous setting fits well with the federated optimization idea in practical large-scale settings with heterogeneous clients. Thus, it potentially leads to higher efficiency in terms of communication overhead and idle periods. To evaluate the learning completion delay of BC-enabled FL, we provide an analytical model based on batch service queue theory. Furthermore, we provide simulation results to assess the performance of both synchronous and asynchronous mechanisms. Important aspects involved in the BC-enabled FL optimization, such as the network size, link capacity, or user requirements, are put together and analyzed. As our results show, the synchronous setting leads to higher prediction accuracy than the asynchronous case. Nevertheless, asynchronous federated optimization provides much lower latency in many cases, thus becoming an appealing FL solution when dealing with large data sets, tough timing constraints (e.g., near-real-time applications), or highly varying training data.

Repository description

This repository contains the resources used to generate the results included in the paper entitled "Blockchain-enabled Server-less Federated Learning". The files included in this repository are:

  1. LaTeX files: contains the files used to generate the manuscript.
  2. Code & Results: scripts and code used to generate the results included in the paper.
  • Queue code: scripts used to execute the Blockchain queuing delay simulations through the batch-service queue simulator.
  • TensorFlow code: python scripts used to execute the FL mechanisms through TensorFlowFederated.
  • Matlab code: matlab scripts used to process the results and plot the figures included in the manuscript.
  • Outputs: files containing the outputs from the different resources (queue simulator, TFF).
  • Figures: figures included in the manuscript and others with preliminary results.

Usage

Part 1: Batch service queue analysis

To generate the results related to the analysis of the queueing delay in the Blockchain, we used our batch-service queue simulator (commit: f846b66). Please, refer to that repository's documentation for installation/execution guidelines. As for the corresponding theoretical background, more details can be found in [1].

The obtained results from this part can be found at "Matlab code/output_queue_simulator". To reproduce them, execute the scripts from the "Batch service queue" folder in the batch-service queue simulator.

Part 2: FLchain analysis

Tensorflow Federated (TFF) has been used to evaluate the proposed s-FLchain and a-FLchain mechanisms in the manuscript. To get started with TF (and TFF), we strongly recommend using the tutorials in https://www.tensorflow.org/federated/tutorials/tutorials_overview.

Once the TFF environment has been setup, our results can be reproduced by using the scripts in "TensorFlow code":

  1. centalized_baseline.py: centralized ML model for getting baseline results (upper/lower bounds).
  2. sFLchain_vs_aFLchain.py: script generating the output for the comparison of the synchronous and the asynchronous models.

The output results from this part can be found at "Matlab code/output_tensorflow".

Part 3: End-to-end analysis framework

Finally, to gather all the resources together, we have used the end-to-end latency framework contained in this repository ("Matlab code/simulation_scripts"). Those files contain the communication and computation models used to calculate the total latency experienced by each considered Blockchain-enabled FL mechanism. Moreover, to get the end-to-end latency and accuracy results, the abovementioned scripts gather and process the outputs obtained from both batch-service queue simulator and TFF.

Content:

  1. 0_preliminary_results: evaluation of several FL parameters via TFF (out of the scope of this publication).
  2. 1_blockchain_analysis: evaluation of the Blockchain queuing delay (refer to Part 1: Batch service queue analysis).
  3. 2_flchain: evaluation of the FL accuracy (refer to Part 2: FLchain analysis) and end-to-end latency analysis. Includes models to compute communication and computation-related delays.

Performance Evaluation

Simulation parameters

The simulation parameters used in the publication are as follows:

Parameter Value
Number of miners 19
Transaction size 5 kbits
BC Block header size 20 kbits
Max. waiting time 1000 seconds
Queue length 1000 packets
--------- --------------------------------------- ----------------------
Min/max distance Client-BS 0/4.15 meters
Bandwidth. 180 kHz
Min/max distance Client-BS 2 GHz
Min/max distance Client-BS 0 dBi
Comm. Loss at the reference distance (P_L0) 5 dB
Path-loss exponent (α) 4.4
Shadowing factor (σ) 9.5
Obstacles factor (γ) 30
Ground noise -95 dBm
Capacity P2P links 5 Mbps
--------- --------------------------------------- ----------------------
Learning algorithm Neural Network
Number of hidden layers 2
Activation function ReLU
Optimizer SGD
Loss function Cat. cross-entropy
ML Learning rate (local/global) 0.01/1
Epochs number 5
Batch size 20
CPU cycles to process a data point 10^-5
Clients' clock speed 1 GHz

Simulation Results

In what follows, we present the results presented in the manuscript. First, we refer to the Blockchain queuing delay analysis, where we assess the sensitivity of the Blockchain on various parameters, including the block size, the mining rate, the traffic intensity, or the miners' communication capacity.

Next, we provide a broader vision of the Blockchain transaction confirmation latency by including other delays different than the queuing delay, such as transaction upload, block generation, or block propagation.

Finally, we present the results obtained for the evaluation of s-FLchain and a-FLchain in terms of learning accuracy and learning completion time:

References

[1] Wilhelmi, F., & Giupponi, L. (2021). Discrete-Time Analysis of Wireless Blockchain Networks. arXiv preprint arXiv:2104.05586.

Contribute

If you want to contribute, please contact to [email protected].

Owner
Francesc Wilhelmi
PhD Student at the Wireless Networking Research Group (Universitat Pompeu Fabra)
Francesc Wilhelmi
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023