PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Overview

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

This repository contains the PyTorch implementation of the PanopticBEV model proposed in our RA-L 2021 paper Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images.

Our approach, PanopticBEV, is the state-of-the-art approach for generating panoptic segmentation maps in the bird's eye view using only monocular frontal view images.

PanopticBEV Teaser

If you find this code useful for your research, please consider citing our paper:

@article{gosala2021bev,
  title={Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images},
  author={Gosala, Nikhil and Valada, Abhinav},
  journal={arXiv preprint arXiv:2108.03227},
  year={2021}
}

Relevant links

System requirements

  • Linux (Tested on Ubuntu 18.04)
  • Python3 (Tested using Python 3.6.9)
  • PyTorch (Tested using PyTorch 1.8.1)
  • CUDA (Tested using CUDA 11.1)

Installation

a. Create a python virtual environment and activate it.

python3 -m venv panoptic_bev
source panoptic_bev/bin/activate

b. Update pip to the latest version.

python3 -m pip install --upgrade pip

c. Install the required python dependencies using the provided requirements.txt file.

pip3 install -r requirements.txt

d. Install the PanopticBEV code.

python3 setup.py develop

Obtaining the datasets

Please download the datasets from here and follow the instructions provided in the encapsulated readme file.

Code Execution

Configuration parameters

The configuration parameters of the model such as the learning rate, batch size, and dataloader options are stored in the experiments/config folder. If you intend to modify the model parameters, please do so here.

Training and Evaluation

The training and evaluation python codes along with the shell scripts to execute them are provided in the scripts folder. Before running the shell scripts, please fill in the missing parameters with your computer-specific data paths and parameters.

To train the model, execute the following command after replacing * with either kitti or nuscenes.

bash train_panoptic_bev_*.sh

To evaluate the model, execute the following command after replacing * with either kitti or nuscenes.

bash eval_panoptic_bev_*.sh 

Acknowledgements

This work was supported by the Federal Ministry of Education and Research (BMBF) of Germany under ISA 4.0 and by the Eva Mayr-Stihl Stiftung.

This project contains code adapted from other open-source projects. We especially thank the authors of:

License

This code is released under the GPLv3 for academic usage. For commercial usage, please contact Nikhil Gosala.

[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022