Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Overview

Permutation Invariant Graph Generation via Score-Based Generative Modeling

This repo contains the official implementation for the paper

Permutation Invariant Graph Generation via Score-Based Generative Modeling (AISTATS 2020),

Authors: Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon


We propose a permutation invariant approach to modeling graphs, using the framework of score-based generative modeling. In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph (a.k.a, the score function). This permutation equivariant model of gradients implicitly defines a permutation invariant distribution for graphs. We can train this graph neural network with score matching and sample from it with annealed Langevin dynamics.

Dependencies

First, install PyTorch following the steps on its official website. The code has been tested over PyTorch 1.3.1 and 1.8.1.

Then run the following command to install the other dependencies.

pip install -r requirements.txt

To compile the ORCA program (see http://www.biolab.si/supp/orca/orca.html) for the evaluation step, run

cd evaluation/orca && g++ -O2 -std=c++11 -o orca orca.cpp

Running Experiments

Preparing Datasets

To generate the datasets, run

mkdir data
python gen_data.py # to generate the community-small dataset
python process_dataset.py # to generate the ego-small dataset

Configuring

The configurations are in the config/ directory, written in the YAML format. Refer to the comments in the given files for details.

The output files under the directory <exp_dir>/<exp_name> (set in the YAML configuration file) are

.
├── config.yaml  # a copy of the configuration 
├── fig  # reconstruction of the perturbed graphs
│   └── xxx.pdf
├── info.log  # logs (if running train.py)
├── models  
│   └── xxx.pth  # the saved PyTorch checkpoint
└── sample
    ├── fig
    │   └── xxx.pdf  # images of the generated graphs
    ├── info.log  # logs (if running sampling.py)
    └── sample_data
        └── xxx.pkl  # saved python list object of the generated graphs (networkx.Graph)

Training

train.py is the main executable file to run the whole pipeline (training, sampling, evaluation). Run python train.py -h to show its usage:

usage: train.py [-h] -c CONFIG_FILE [-l LOG_LEVEL] [-m COMMENT]

Running Experiments

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG_FILE, --config_file CONFIG_FILE
                        Path of config file
  -l LOG_LEVEL, --log_level LOG_LEVEL
                        Logging Level, one of: DEBUG, INFO, WARNING, ERROR, CRITICAL
  -m COMMENT, --comment COMMENT
                        A single line comment for the experiment

Examples:

python train.py -c config/train_ego_small.yaml  # to run on Ego-small dataset

python train.py -c config/train_com_small.yaml  # to run on Community-small dataset

Sampling

sample.py is for evaluating a saved model. The usage is the same as train.py. To set the location of the saved model, change model_save_dir in the YAML file, e.g. model_save_dir: 'exp/ego_small/edp-gnn_ego_small_xxx/models'.

Examples:

python sample.py -c config/sample_ego_small.yaml  # to run on Ego-small dataset
python sample.py -c config/sample_com_small.yaml  # to run on Community-small dataset
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022