PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Related tags

Deep LearningGMFN
Overview

Gated Multiple Feedback Network for Image Super-Resolution

This repository contains the PyTorch implementation for the proposed GMFN [arXiv].

The framework of our proposed GMFN. The colored arrows among different time steps denote the multiple feedback connections. The high-level information carried by them helps low-level features become more representative.

Demo

Clone SRFBN as the backbone and satisfy its requirements.

Test

  1. Copy ./networks/gmfn_arch.py into SRFBN_CVPR19/networks/

  2. Download the pre-trained models from Google driver or Baidu Netdisk, unzip and place them into SRFBN_CVPR19/models.

  3. Copy ./options/test/ to SRFBN_CVPR19/options/test/.

  4. Run commands cd SRFBN_CVPR19 and one of followings for evaluation on Set5:

python test.py -opt options/test/test_GMFN_x2.json
python test.py -opt options/test/test_GMFN_x3.json
python test.py -opt options/test/test_GMFN_x4.json
  1. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

To test GMFN on other standard SR benchmarks or your own images, please refer to the instruction in SRFBN.

Train

  1. Prepare the training set according to this (1-3).
  2. Modify ./options/train/train_GMFN.json by following the instructions in ./options/train/README.md.
  3. Run commands:
cd SRFBN_CVPR19
python train.py -opt options/train/train_GNFN.json
  1. You can monitor the training process in ./experiments.

  2. Finally, you can follow the test pipeline to evaluate the model trained by yourself.

Performance

Quantitative Results

Quantitative evaluation under scale factors x2, x3 and x4. The best performance is shown in bold and the second best performance is underlined.

More Qualitative Results (x4)

Acknowledgment

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019gmfn,
    author = {Li, Qilei and Li, Zhen and Lu, Lu and Jeon, Gwanggil and Liu, Kai and Yang, Xiaomin},
    title = {Gated Multiple Feedback Network for Image Super-Resolution},
    booktitle = {The British Machine Vision Conference (BMVC)},
    year = {2019}
}

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}
You might also like...
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

Pytorch implementation for  our ICCV 2021 paper
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

This is the official pytorch implementation for our ICCV 2021 paper
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation for our NeurIPS 2021 Spotlight paper
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Comments
  • Approximately how many epoches will reach the results in the paper (4x SR result)

    Approximately how many epoches will reach the results in the paper (4x SR result)

    Hi, liqilei After I have run about 700 epoches, the reult on val set is 32.41(highest result). I want to know if my training process seems to be problematic? How long did you reach 32.47 of SRFBN when you were training? How long does it take to reach 32.70? Thank you.

    opened by Senwang98 7
  • train error size not match

    train error size not match

    CUDA_VISIBLE_DEVICES=0 python train.py -opt options/train/train_GMFN.json I use celeba dataset train

    ===> Training Epoch: [1/1000]... Learning Rate: 0.000200 Epoch: [1/1000]: 0%| | 0/251718 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 131, in main() File "train.py", line 69, in main iter_loss = solver.train_step() File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in train_step loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/module.py", line 477, in call result = self.forward(*input, **kwargs) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/loss.py", line 87, in forward return F.l1_loss(input, target, reduction=self.reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1702, in l1_loss input, target, reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1674, in _pointwise_loss return lambd_optimized(input, target, reduction) RuntimeError: input and target shapes do not match: input [16 x 3 x 192 x 192], target [16 x 3 x 48 x 48] at /pytorch/aten/src/THCUNN/generic/AbsCriterion.cu:12

    opened by yja1 3
  • Not an Issue

    Not an Issue

    Hey @Paper99,

    Thanks for sharing your code! I wonder if it is possible to help with visualizing featuer-maps as you did in your paper figure 4.

    Thanks

    opened by Auth0rM0rgan 1
  • My training result with scale = 2

    My training result with scale = 2

    Hi, After I have trained the DIV2k, I get the final result(use best_ckp.pth to test):

    set5:38.16/0.9610
    set14:33.91/0.9203
    urban100:32.81/0.9349
    B100:32.30/0.9011
    manga109:39.01/0.9776
    

    It seems much lower than that in your paper.

    opened by Senwang98 6
Owner
Qilei Li
Qilei Li
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022