The repository offers the official implementation of our paper in PyTorch.

Related tags

Deep LearningCIT
Overview

Cloth Interactive Transformer (CIT)

Cloth Interactive Transformer for Virtual Try-On
Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Philip H.S. Torr5, Nicu Sebe16.
1University of Trento, Italy, 2Peng Cheng Laboratory, China, 3Peking University Shenzhen Graduate School, China,
4Inception Institute of AI, UAE, 5University of Oxford, UK, 6Huawei Research Ireland, Ireland.

The repository offers the official implementation of our paper in PyTorch. The code and pre-trained models are tested with pytorch 0.4.1, torchvision 0.2.1, opencv-python 4.1, and pillow 5.4 (Python 3.6).

In the meantime, check out our recent paper XingGAN and XingVTON.

Usage

This pipeline is a combination of consecutive training and testing of Cloth Interactive Transformer (CIT) Matching block based GMM and CIT Reasoning block based TOM. GMM generates the warped clothes according to the target human. Then, TOM blends the warped clothes outputs from GMM into the target human properties, to generate the final try-on output.

  1. Install the requirements
  2. Download/Prepare the dataset
  3. Train the CIT Matching block based GMM network
  4. Get warped clothes for training set with trained GMM network, and copy warped clothes & masks inside data/train directory
  5. Train the CIT Reasoning block based TOM network
  6. Test CIT Matching block based GMM for testing set
  7. Get warped clothes for testing set, copy warped clothes & masks inside data/test directory
  8. Test CIT Reasoning block based TOM testing set

Installation

This implementation is built and tested in PyTorch 0.4.1. Pytorch and torchvision are recommended to install with conda: conda install pytorch=0.4.1 torchvision=0.2.1 -c pytorch

For all packages, run pip install -r requirements.txt

Data Preparation

For training/testing VITON dataset, our full and processed dataset is available here: https://1drv.ms/u/s!Ai8t8GAHdzVUiQQYX0azYhqIDPP6?e=4cpFTI. After downloading, unzip to your own data directory ./data/.

Training

Run python train.py with your specific usage options for GMM and TOM stage.

For example, GMM: python train.py --name GMM --stage GMM --workers 4 --save_count 5000 --shuffle. Then run test.py for GMM network with the training dataset, which will generate the warped clothes and masks in "warp-cloth" and "warp-mask" folders inside the "result/GMM/train/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/train" folder.

Run TOM stage, python train.py --name TOM --stage TOM --workers 4 --save_count 5000 --shuffle

Evaluation

We adopt four evaluation metrics in our work for evaluating the performance of the proposed XingVTON. There are Jaccard score (JS), structral similarity index measure (SSIM), learned perceptual image patch similarity (LPIPS), and Inception score (IS).

Note that JS is used for the same clothing retry-on cases (with ground truth cases) in the first geometric matching stage, while SSIM and LPIPS are used for the same clothing retry-on cases (with ground truth cases) in the second try-on stage. In addition, IS is used for different clothing try-on (where no ground truth is available).

For JS

  • Step1: Runpython test.py --name GMM --stage GMM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/GMM_pretrained/gmm_final.pth then the parsed segmentation area for current upper clothing is used as the reference image, accompanied with generated warped clothing mask then:
  • Step2: Runpython metrics/getJS.py

For SSIM

After we run test.py for GMM network with the testibng dataset, the warped clothes and masks will be generated in "warp-cloth" and "warp-mask" folders inside the "result/GMM/test/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/test" folder. Then:

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth Then the original target human image is used as the reference image, accompanied with the generated retry-on image then:
  • Step2: Run python metrics/getSSIM.py

For LPIPS

  • Step1: You need to creat a new virtual enviriment, then install PyTorch 1.0+ and torchvision;
  • Step2: Run sh metrics/PerceptualSimilarity/testLPIPS.sh;

For IS

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth
  • Step2: Run python metrics/getIS.py

Inference

The pre-trained models are provided here. Download the pre-trained models and put them in this project (./checkpoints) Then just run the same step as Evaluation to test/inference our model.

Acknowledgements

This source code is inspired by CP-VTON, CP-VTON+. We are extremely grateful for their public implementation.

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

CIT

@article{ren2021cloth,
  title={Cloth Interactive Transformer for Virtual Try-On},
  author={Ren, Bin and Tang, Hao and Meng, Fanyang and Ding, Runwei and Shao, Ling and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2104.05519},
  year={2021}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Owner
Bingoren
Bingoren
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022