Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Overview

Deep Optics for Single-shot High-dynamic-range Imaging

Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2020, by Chris Metzler, Hayato Ikoma, Yifan (Evan) Peng, and Gordon Wetzstein.

Abstract

High-dynamic-range (HDR) imaging is crucial for many applications. Yet, acquiring HDR images with a single shot remains a challenging problem. Whereas modern deep learning approaches are successful at hallucinating plausible HDR content from a single low-dynamic-range (LDR) image, saturated scene details often cannot be faithfully recovered. Inspired by recent deep optical imaging approaches, we interpret this problem as jointly training an optical encoder and electronic decoder where the encoder is parameterized by the point spread function (PSF) of the lens, the bottleneck is the sensor with a limited dynamic range, and the decoder is a convolutional neural network (CNN). The lens surface is then jointly optimized with the CNN in a training phase; we fabricate this optimized optical element and attach it as a hardware add-on to a conventional camera during inference. In extensive simulations and with a physical prototype, we demonstrate that this end-to-end deep optical imaging approach to single-shot HDR imaging outperforms both purely CNN-based approaches and other PSF engineering approaches.

Teaser

Dependencies

All dependencies for the testing code can be installed by running "conda env create -f environment.yml".

The training code also requries that OpenCV is installed.

Testing

To reconstruct the experimentally captured data using a pretrained model run DemoScript.sh. Results will be saved in the "Reconstructions" directory.

Training

Before training, first follow the instructions in the supplement of [A] to download several thousand HDR images from various sources. A small subset of this dataset can be downloaded by running webscraper.py in the "utils" directory. The downloaded HDR video files can be decimated by running "SaveEvery10thFrame.py". Be sure to backup the data before running this function.

Next compile the preprocessing function "virtualcamera.cpp" by running gcc -Wall -lm -lstdc++ -lopencv_core -lopencv_imgproc -lopencv_imgcodecs virtualcamera.cpp -o virtualcamera from the "virtualcamera" directory.

To train a network and optics end-to-end run EndtoEndTrainingScript.sh. One will need to modify the "--data_dir" argument to point to the location of the newly created dataset.

To fine-tune a network using the measured PSF run FineTuneTrainingScript.sh. One will again need to modify the "--data_dir" argument to point to the location of the newly created dataset.

Please direct questions to [email protected].

Acknowledgements

This project heavily uses code adapted from [A], [B], and [C]. It also uses the various HDR datasets listed in the supplement of [A].

[A] Eilertsen, Gabriel, et al. "HDR image reconstruction from a single exposure using deep CNNs." ACM transactions on graphics (TOG) 36.6 (2017): 1-15.

[B] Sitzmann, Vincent, et al. "End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging." ACM Transactions on Graphics (TOG) 37.4 (2018): 1-13.

[C] Chang, Julie, and Gordon Wetzstein. "Deep optics for monocular depth estimation and 3d object detection." Proceedings of the IEEE International Conference on Computer Vision. 2019.

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023