pytorch implementation of trDesign

Overview

trdesign-pytorch

This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port of the trRosetta network was done by @lucidrains.

Figure 1: trDesign Architecture

Figure 1 of De novo protein design by deep network hallucination (p. 12, Anishchenko et al., CC-BY-ND)

Requirements

Requires python 3.6+

pip install matplotlib numpy torch

Usage (protein design):

  1. Edit src/config.py to set the experiment configuration.
  2. Run python design.py
  3. All results will be saved under results/

Design Configuration Options

  • Sequence length (int)
  • AA_weight (float): how strongly we want the amino acid type composition to be 'natural'
  • RM_AA (str): disable specific amino acid types
  • n_models (int): how many trRosetta model ensembles we want to use during the MCMC loop
  • sequence constraint (str): fix a subset of the sequence residues to specific amino acids
  • target_motif (path): optimize a sequence with a target motif provided as an .npz file
  • MCMC options

Usage (protein structure prediction):

python predict.py example.a3m
# or
python predict.py example.fasta

To get a .pdb from the resulting .npz you need to request the trRosetta package from the original authors.

Then you can run:

python trRosetta.py example.npz example.fasta output.pdb -w /tmp

References

@article {Yang1496,
  author = {Yang, Jianyi and Anishchenko, Ivan and Park, Hahnbeom and Peng, Zhenling and Ovchinnikov, Sergey and Baker, David},
  title = {Improved protein structure prediction using predicted interresidue orientations},
  year = {2020},
  doi = {10.1073/pnas.1914677117},
  URL = {https://www.pnas.org/content/117/3/1496},
  eprint = {https://www.pnas.org/content/117/3/1496.full.pdf},
  journal = {Proceedings of the National Academy of Sciences}
}
@article {Anishchenko2020.07.22.211482,
  author = {Anishchenko, Ivan and Chidyausiku, Tamuka M. and Ovchinnikov, Sergey and Pellock, Samuel J. and Baker, David},
  title = {De novo protein design by deep network hallucination},
  year = {2020},
  doi = {10.1101/2020.07.22.211482},
  URL = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482},
  eprint = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482.full.pdf},
  journal = {bioRxiv}
}
@article {Tischer2020.11.29.402743,
  author = {Tischer, Doug and Lisanza, Sidney and Wang, Jue and Dong, Runze and Anishchenko, Ivan and Milles, Lukas F. and Ovchinnikov, Sergey and Baker, David},
  title = {Design of proteins presenting discontinuous functional sites using deep learning},
  year = {2020},
  doi = {10.1101/2020.11.29.402743},
  URL = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743},
  eprint = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743.full.pdf},
  journal = {bioRxiv}
}
Owner
Learn Ventures Inc.
Learn Ventures Inc.
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021