Practical Single-Image Super-Resolution Using Look-Up Table

Related tags

Deep LearningSR-LUT
Overview

Practical Single-Image Super-Resolution Using Look-Up Table

[Paper]

Dependency

  • Python 3.6
  • PyTorch
  • glob
  • numpy
  • pillow
  • tqdm
  • tensorboardx

1. Training deep SR network

  1. Move into a directory.
cd ./1_Train_deep_model
  1. Prepare DIV2K training images into ./train.
  • HR images should be placed as ./train/DIV2K_train_HR/*.png.
  • LR images should be placed as ./train/DIV2K_train_LR_bicubic/X4/*.png.
  1. Set5 HR/LR validation png images are already included in ./val, or you can use other images.

  2. You may modify user parameters in L22 in ./Train_Model_S.py.

  3. Run.

python Train_Model_S.py
  1. Checkpoints will be saved in ./checkpoint/S.
  • Training log will be generated in ./log/S.

2. Transferring to LUT

  1. Move into a directory.
cd ./2_Transfer_to_LUT
  1. Modify user parameters in L9 in ./Transfer_Model_S.py.
  • Specify a saved checkpoint in the step 1, or you can use attached ./Model_S.pth.
  1. Run.
python Transfer_Model_S.py
  1. The resulting LUT will be saved like ./Model_S_x4_4bit_int8.npy.

3. Testing using LUT

  1. Move into a directory.
cd ./3_Test_using_LUT
  1. Modify user parameters in L17 in ./Test_Model_S.py.
  • Specify the generated LUT in the step 2, or use attached LUTs (npy files).
  1. Set5 HR/LR test images are already included in ./test, or you can use other images.

  2. Run.

python Test_Model_S.py      # Ours-S
python Test_Model_F.py      # Ours-F
python Test_Model_V.py      # Ours-V
  1. Resulting images will be saved in ./output_S_x4_4bit/*.png.

  2. We can reproduce the results of Table 6 in the paper, by modifying the variable SAMPLING_INTERVAL in L19 in Test_Model_S.py to range 3-8.

4. Testing on a smartphone

  1. Download SR-LUT.apk and install it.

  2. You can test Set14 images or other images.

SR-LUT Android app demo

BibTeX

@InProceedings{jo2021practical,
   author = {Jo, Younghyun and Kim, Seon Joo},
   title = {Practical Single-Image Super-Resolution Using Look-Up Table},
   booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month = {June},
   year = {2021}
}
Owner
Younghyun Jo
Younghyun Jo
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023