This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

Related tags

Deep LearningTANS
Overview

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning. Accepted to NeurIPS 2021 (Spotlight).

@inproceedings{jeong2021task,
    title     = {Task-Adaptive Neural Network Search with Meta-Contrastive Learning},
    author    = {Jeong, Wonyong and Lee, Hayeon and Park, Geon and Hyung, Eunyoung and Baek, Jinheon and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

Most conventional Neural Architecture Search (NAS) approaches are limited in that they only generate architectures without searching for the optimal parameters. While some NAS methods handle this issue by utilizing a supernet trained on a large-scale dataset such as ImageNet, they may be suboptimal if the target tasks are highly dissimilar from the dataset the supernet is trained on. To address such limitations, we introduce a novel problem of Neural Network Search (NNS), whose goal is to search for the optimal pretrained network for a novel dataset and constraints (e.g. number of parameters), from a model zoo. Then, we propose a novel framework to tackle the problem, namely Task-Adaptive Neural Network Search (TANS). Given a model-zoo that consists of network pretrained on diverse datasets, we use a novel amortized meta-learning framework to learn a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a high-performing network on it, and minimize the similarity between irrelevant dataset-network pairs. We validate the effectiveness and efficiency of our method on ten real-world datasets, against existing NAS/AutoML baselines. The results show that our method instantly retrieves networks that outperform models obtained with the baselines with significantly fewer training steps to reach the target performance, thus minimizing the total cost of obtaining a task-optimal network.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Environmental Setup

Please install packages thorugh requirements.txt after creating your own environment with python 3.8.x.

$ conda create --name ENV_NAME python=3.8
$ conda activate ENV_NAME
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install --upgrade pip
$ pip install -r requirements.txt

Preparation

We provide our model-zoo consisting of 14K pretrained models on various Kaggle datasets. We also share the full raw datasets collected from Kaggle as well as their processed versions of datasets for meta-training and meta-test in our learning framework. Except for the raw datasets, all the processed files are required to perform the cross model retrieval learning and meta-testing on unseen datasets. Please download following files before training or testing. (Due to the heavy file size, some files will be updated by Oct. 28th. Sorry for the inconvenience).

No. File Name Description Extension Size Download
1 p_mod_zoo Processed 14K Model-Zoo pt 91.9Mb Link
2 ofa_nets Pretrained OFA Supernets zip - Pending
3 raw_m_train Raw Meta-Training Datasets zip - Pending
4 raw_m_test Raw Meta-Test Datasets zip - Pending
5 p_m_train Processed Meta-Training Files pt 69Mb Link
6 p_m_test Processed Meta-Test Files zip 11.6Gb Link

After download, specify their location on following arguments:

  • data-path: 5 and 6 should be placed. 6 must be unzipped.
  • model-zoo: path where 1 should be located. Please give full path to the file. i.e. path/to/p_mod_zoo.pt
  • model-zoo-raw: path where 2 should be placed and unzipped (required for meta-test experiments)

Learning the Cross Modal Retrieval Space

Please use following command to learn the cross modal space. Keep in mind that correct model-zoo and data-path are required. Forbase-path, this path is for storing training outcomes, such as resutls, logs, the cross modal embeddings, etc.

$ python3 main.py --gpu $1 \
                  --mode train \
                  --batch-size 140 \
                  --n-epochs 10000 \
                  --base-path path/for/storing/outcomes/\
                  --data-path path/to/processed/dataset/is/stored/\
                  --model-zoo path/to/model_zoo.pt\
                  --seed 777 

You can also simply run a script file after updating the paths.

$ cd scripts
$ sh train.sh GPU_NO

Meta-Test Experiment

You can use following command for testing the cross-modal retrieval performance on unseen meta-test datasets. In this experiment, load-path which is the base-path of the cross modal space that you previously built and model-zoo-raw which is path for the OFA supernets pretrained on meta-training datasets are required.

$ python3 ../main.py --gpu $1 \
                     --mode test \
                     --n-retrievals 10\
                     --n-eps-finetuning 50\
                     --batch-size 32\
                     --load-path path/to/outcomes/stored/\
                     --data-path path/to/processed/dataset/is/stored/\
                     --model-zoo path/to/model_zoo.pt\
                     --model-zoo-raw path/to/pretrained/ofa/models/\
                     --base-path path/for/storing/outcomes/\
                     --seed 777

You can also simply run a script file after updating the paths.

$ cd scripts
$ sh test.sh GPU_NO
Owner
Wonyong Jeong
Ph.D. Candidate @ KAIST AI
Wonyong Jeong
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023