The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

Related tags

Deep LearningSTAR-FC
Overview

STAR-FC

This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 .

🎓 Requirements

  • Python = 3.6
  • Pytorch = 1.2.0
  • faiss

🧚 Hardware

The hardware we used in this work is as follows:

🍰 Datasets

cd STAR-FC

Create a new folder for training data:

mkdir data

To run the code, please download the refined MS1M dataset and partition it into 10 splits, then construct the data directory as follows:

|——data
   |——features
      |——part0_train.bin
      |——part1_test.bin
      |——...
      |——part9_test.bin
   |——labels
      |——part0_train.meta
      |——part1_test.meta
      |——...
      |——part9_test.meta
   |——knns
      |——part0_train/faiss_k_80.npz
      |——part1_test/faiss_k_80.npz
      |——...
      |——part9_test/faiss_k_80.npz

We have used the data from: https://github.com/yl-1993/learn-to-cluster

🍬 Model

Put the pretrained models Backbone.pth and Head.pth in the ./pretrained_model. Our trained models will come soon.

☘️ Training

Adjust the configuration in ./src/configs/cfg_gcn_ms1m.py, then run the algorithm as follows:

cd STAR-FC
sh scripts/train_gcn_ms1m.sh

🌵 Testing

Adjust the configuration in ./src/configs/cfg_gcn_ms1m.py, then run the algorithm as follows:

cd STAR-FC
python test_final.py

Acknowledgement

This code is based on the publicly available face clustering codebase https://github.com/yl-1993/learn-to-cluster.

Citation

Please cite the following paper if you use this repository in your reseach.

@inproceedings{shen2021starfc,
   author={Shen, Shuai and Li, Wanhua and Zhu, Zheng and Huan, Guan and Du, Dalong and Lu, Jiwen and Zhou, Jie},
   title={Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes},
   booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
   year={2021}
}
Owner
Shuai Shen
I am a Ph.D. student in the Department of Automation at Tsinghua University, advised by Prof. Jiwen Lu.
Shuai Shen
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022