This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

Overview

MLOps with Vertex AI

This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The example use Keras to implement the ML model, TFX to implement the training pipeline, and Model Builder SDK to interact with Vertex AI.

MLOps lifecycle

Getting started

  1. Setup your MLOps environment on Google Cloud.

  2. Start your AI Notebook instance.

  3. Open the JupyterLab then open a new Terminal

  4. Clone the repository to your AI Notebook instance:

    git clone https://github.com/GoogleCloudPlatform/mlops-with-vertex-ai.git
    cd mlops-with-vertex-ai
    
  5. Install the required Python packages:

    pip install tfx==1.2.0 --user
    pip install -r requirements.txt
    

    NOTE: You can ignore the pip dependencies issues. These will be fixed when upgrading to subsequent TFX version.


  6. Upgrade the gcloud components:

    sudo apt-get install google-cloud-sdk
    gcloud components update
    

Dataset Management

The Chicago Taxi Trips dataset is one of public datasets hosted with BigQuery, which includes taxi trips from 2013 to the present, reported to the City of Chicago in its role as a regulatory agency. The task is to predict whether a given trip will result in a tip > 20%.

The 01-dataset-management notebook covers:

  1. Performing exploratory data analysis on the data in BigQuery.
  2. Creating Vertex AI Dataset resource using the Python SDK.
  3. Generating the schema for the raw data using TensorFlow Data Validation.

ML Development

We experiment with creating a Custom Model using 02-experimentation notebook, which covers:

  1. Preparing the data using Dataflow.
  2. Implementing a Keras classification model.
  3. Training the Keras model with Vertex AI using a pre-built container.
  4. Upload the exported model from Cloud Storage to Vertex AI.
  5. Extract and visualize experiment parameters from Vertex AI Metadata.
  6. Use Vertex AI for hyperparameter tuning.

We use Vertex TensorBoard and Vertex ML Metadata to track, visualize, and compare ML experiments.

In addition, the training steps are formalized by implementing a TFX pipeline. The 03-training-formalization notebook covers implementing and testing the pipeline components interactively.

Training Operationalization

The 04-pipeline-deployment notebook covers executing the CI/CD steps for the training pipeline deployment using Cloud Build. The CI/CD routine is defined in the pipeline-deployment.yaml file, and consists of the following steps:

  1. Clone the repository to the build environment.
  2. Run unit tests.
  3. Run a local e2e test of the TFX pipeline.
  4. Build the ML container image for pipeline steps.
  5. Compile the pipeline.
  6. Upload the pipeline to Cloud Storage.

Continuous Training

After testing, compiling, and uploading the pipeline definition to Cloud Storage, the pipeline is executed with respect to a trigger. We use Cloud Functions and Cloud Pub/Sub as a triggering mechanism. The Cloud Function listens to the Pub/Sub topic, and runs the training pipeline given a message sent to the Pub/Sub topic. The Cloud Function is implemented in src/pipeline_triggering.

The 05-continuous-training notebook covers:

  1. Creating a Cloud Pub/Sub topic.
  2. Deploying a Cloud Function.
  3. Triggering the pipeline.

The end-to-end TFX training pipeline implementation is in the src/pipelines directory, which covers the following steps:

  1. Receive hyper-parameters using hyperparam_gen custom python component.
  2. Extract data from BigQuery using BigQueryExampleGen component.
  3. Validate the raw data using StatisticsGen and ExampleValidator component.
  4. Process the data using on Dataflow Transform component.
  5. Train a custom model with Vertex AI using Trainer component.
  6. Evaluate and validate the custom model using ModelEvaluator component.
  7. Save the blessed to model registry location in Cloud Storage using Pusher component.
  8. Upload the model to Vertex AI using vertex_model_pusher custom python component.

Model Deployment

The 06-model-deployment notebook covers executing the CI/CD steps for the model deployment using Cloud Build. The CI/CD routine is defined in build/model-deployment.yaml file, and consists of the following steps:

  1. Test model interface.
  2. Create an endpoint in Vertex AI.
  3. Deploy the model to the endpoint.
  4. Test the Vertex AI endpoint.

Prediction Serving

We serve the deployed model for prediction. The 07-prediction-serving notebook covers:

  1. Use the Vertex AI endpoint for online prediction.
  2. Use the Vertex AI uploaded model for batch prediction.
  3. Run the batch prediction using Vertex Pipelines.

Model Monitoring

After a model is deployed in for prediction serving, continuous monitoring is set up to ensure that the model continue to perform as expected. The 08-model-monitoring notebook covers configuring Vertex AI Model Monitoring for skew and drift detection:

  1. Set skew and drift threshold.
  2. Create a monitoring job for all the models under and endpoint.
  3. List the monitoring jobs.
  4. List artifacts produced by monitoring job.
  5. Pause and delete the monitoring job.

Metadata Tracking

You can view the parameters and metrics logged by your experiments, as well as the artifacts and metadata stored by your Vertex Pipelines in Cloud Console.

Disclaimer

This is not an official Google product but sample code provided for an educational purpose.


Copyright 2021 Google LLC.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Google Cloud Platform
Google Cloud Platform
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023