CARL provides highly configurable contextual extensions to several well-known RL environments.

Related tags

Deep LearningCARL
Overview

The CARL Benchmark Library

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments. It's designed to test your agent's generalization capabilities in all scenarios where intra-task generalization is important.

Benchmarks include:

  • OpenAI gym classic control suite extended with several physics context features like gravity or friction

  • OpenAI gym Box2D BipedalWalker, LunarLander and CarRacing, each with their own modification possibilities like new vehicles to race

  • All Brax locomotion environments with exposed internal features like joint strength or torso mass

  • Super Mario (TOAD-GAN), a procedurally generated jump'n'run game with control over level similarity

  • RNADesign, an environment for RNA design given structure constraints with structures from different datasets to choose from

Screenshot of each environment included in CARL.

Installation

We recommend you use a virtual environment (e.g. Anaconda) to install CARL and its dependencies. We recommend and test with python 3.9 under Linux.

First, clone our repository and install the basic requirements:

git clone https://github.com/automl/CARL.git --recursive
cd CARL
pip install .

This will only install the basic classic control environments, which should run on most operating systems. For the full set of environments, use the install options:

pip install -e .[box2d, brax, rna, mario]

These may not be compatible with Windows systems. Box2D environment may need to be installed via conda on MacOS systems:

conda install -c conda-forge gym-box2d

In general, we test on Linux systems, but aim to keep the benchmark compatible with MacOS as much as possible. Mario at this point, however, will not run on any operation system besides Linux

To install the additional requirements for ToadGAN:

javac src/envs/mario/Mario-AI-Framework/**/*.java

If you want to use the RNA design environment:

cd src/envs/rna/learna
make requirements
make data

In case you want to run our experiments or use our training files, also install the experiment dependencies:

pip install -e .[experiments]

Train an Agent

To get started with CARL, you can use our 'train.py' script. It will train a PPO agent on the environment of your choice with custom context variations that are sampled from a standard deviation.

To use MetaCartPole with variations in gravity and friction by 20% compared to the default, run:

python train.py 
--env CARLCartPoleEnv 
--context_args gravity friction
--default_sample_std_percentage 0.2
--outdir <result_location>

You can use the plotting scripts in src/eval to view the results.

CARL's Contextual Extension

CARL contextually extends the environment by making the context visible and configurable. During training we therefore can encounter different contexts and train for generalization. We exemplarily show how Brax' Fetch is extended and embedded by CARL. Different instiations can be achieved by setting the context features to different values.

CARL contextually extends Brax' Fetch.

Cite Us

@misc{CARL,
  author    = {C. Benjamins and 
               T. Eimer and 
               F. Schubert and 
               A. Biedenkapp and 
               B. Rosenhahn and 
               F. Hutter and 
               M. Lindauer},
  title     = {CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning},
  howpublished = {https://github.com/automl/CARL},
  year      = {2021},
  month     = aug,
}

References

OpenAI gym, Brockman et al., 2016. arXiv preprint arXiv:1606.01540

Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation, Freeman et al., NeurIPS 2021 (Dataset & Benchmarking Track)

TOAD-GAN: Coherent Style Level Generation from a Single Example, Awiszus et al., AIIDE 2020

Learning to Design RNA, Runge et al., ICRL 2019

License

CARL falls under the Apache License 2.0 (see file 'LICENSE') as is permitted by all work that we use. This includes CARLMario, which is not based on the Nintendo Game, but on TOAD-GAN and TOAD-GUI running under an MIT license. They in turn make use of the Mario AI framework (https://github.com/amidos2006/Mario-AI-Framework). This is not the original game but a replica, explicitly built for research purposes and includes a copyright notice (https://github.com/amidos2006/Mario-AI-Framework#copyrights ).

Comments
  • Rna fixup

    Rna fixup

    RNA is now better documented and more easily runnable. There's also an option to subsample the datasets instead of always using all instances per context.

    The thing that's missing right now are more context options like filtering by solvers or GC-content, but those aren't easily extractable from our data right now, so that's a separate work package all together.

    opened by TheEimer 6
  • Gym 0.22.0

    Gym 0.22.0

    • update required minimum gym version number
    • added pygame as a requirement because it is not picked up by the gym requirements
    • getting rid of CustomBipedalWalkerEnv because the functionality of changing the gravity is covered by CARLEnv (same for CustomLunarLanderEnv)
    • add high game over penalty for LunarLander by a wrapper
    opened by benjamc 6
  • Instance selection

    Instance selection

    Instance selection now is a class. Default is still roundrobin selection. An instance is only selected when env.reset() (or to be more specific, _progress_instance() is called.

    opened by benjamc 4
  • Added Encoders

    Added Encoders

    Context encoders have been added as a folder and an experiment for running the encoder added in the experiments folders. Since the working directory is the experiment one, I had to add an absolute path for the saved weights. This might need to be changed in the config file

    opened by amsks 4
  • Update References with correct conference

    Update References with correct conference

    Thanks for the pointer to the survey, but it hasn't been published anywhere, so that detail is incorrect (I wouldn't want to claim that it's published somewhere when it isn't).

    opened by RobertKirk 3
  • Performance Deviations in Brax

    Performance Deviations in Brax

    Comparing HalfCheetah in Brax (via gym.make and then wrapped as here: https://github.com/google/brax/blob/main/notebooks/training_torch.ipynb) vs in CARL makes a big difference in return even when the context is kept static. Do we do any unexpected reward normalization? Does the way we reset the env make a difference compared to theirs (as we actually update the simluation)?

    bug 
    opened by TheEimer 2
  • Integrate DM Control

    Integrate DM Control

    • [ ] (convert test file to jupyter notebook. I would like to keep that)
    • [ ] check tests / write more to increase coverage
    • [x] update README.md
    • [x] update documentation
    • [x] add dm_control to requirements
    • [x] support dict observation space
    documentation tests 
    opened by benjamc 2
  • Fix gym version

    Fix gym version

    Gym released a new version where the signature of the step function has changed. This affects our code and requires a separate PR. For now, fix the gym version.

    opened by benjamc 1
  • Initial statedistrs #48

    Initial statedistrs #48

    #48 Make initial state distribution configurable. So far, only uniform distributions are used and the bounds can be adjusted.

    Classic control:

    • [x] Acrobot
    • [x] Pendulum
    • [x] MountainCar (normal distribution instead of uniform)
    • [x] MountainCarContinuous (uniform distribution)
    • [x] CartPole

    Box2d

    • [x] LunarLander

    • [ ] (maybe/later) Make distributions fully configurable by passing the distribution class and its parameters.

    • [x] Update documentation: Contexts are automatically filled with the default context if underspecified.

    opened by benjamc 1
  • Integrate dmcontrol

    Integrate dmcontrol

    Add support for dm control environments. Integrated walker, quadruped and fish.

    In dmc environments there is an additional setting for the context, namely the context mask, which can reduce the amount of context features.

    opened by sebidoe 1
  • use appropriate library for building states

    use appropriate library for building states

    So far, when we do not hide the context, we concatenate the context to the state. For jax based environments (brax) this means that the state is converted from a jax to a numpy array. Now, the state builder checks which library to use and keeps jax states as jax arrays and numpy states as numpy arrays.

    Noticed in #42.

    opened by benjamc 1
  • AttributeError: 'System' object has no attribute 'body_idx' in brax

    AttributeError: 'System' object has no attribute 'body_idx' in brax

    when running test/test_all_envs.py, there is AttributeError: 'System' object has no attribute 'body_idx' in carl_fetch and carl_humanoid environments.

    opened by andy-james0310 3
Releases(v0.2.0)
  • v0.2.0(Jul 12, 2022)

    • Integrate dm control environments (#55)
    • Add context masks to only append those to the state (#54)
    • Extend classic control environments to parametrize initial state distributions (#52)
    • Remove RNA environment for maintenance (#61)
    • Fixed pre-commit (mypy, black, flake8, isort) (#62)
    Source code(tar.gz)
    Source code(zip)
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023