Code and data for ImageCoDe, a contextual vison-and-language benchmark

Overview

ImageCoDe

arxiv

This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions.

Example

Data

All collected descriptions for the training and validation set are under data/train_data.json and data/valid_data.json.

Image sets can be downloaded on Zenodo or GoogleDrive and should be unzipped in data/.

You can download from the commandline via:

wget https://zenodo.org/record/6518944/files/image-sets.zip

For ViLBERT experiments, you need to download a pretrained ViLBERT checkpoint from volta here, simply by clicking on ViLBERT in the table. Save the downloaded file as baselines/vilbert/vilbert-pretrained.bin. Since ViLBERT uses image features from Faster R-CNN, you also have to downloaded these for all ImageCoDe images here: Google Drive link. Save the file as data/rcnn-features36-36.lmdb. The same procedure applies for UNITER.

The format for data/train_data.json looks like this:

{
  "MSR-VTT-videoTrainValVideo_video2044-shot1_0": {
    "6": "a mom holding her babies in the middle of the picture, no other image intervenes with the image.",
    "7": "The image is fading between a woman holding a baby and a woman sitting with a red background. The hands of the woman sitting aren't visible."
  },
  "video-storytelling-videochristmas_56Nm66j-i5Q-shot14_2": {
  "..."
  }
}

And the images under data/ have the following structure. Each folder contains 10 images. If the images are video frames, the number X in imgX.jpg indicates the frame number:

  .
  ├── MSR-VTT-videoTrainValVideo_video2044-shot1_0
      │   ├── img0.jpg
      │   ├── img7.jpg
      │   ├── ...
  ├── video-storytelling-videochristmas_56Nm66j-i5Q-shot14_2
      │   ├── ...

Leaderboard

Based on this you can train your model and test on the unlabeled test set:

{
  "MSR-VTT-videoTestVideo_video7763-shot2_1": [
    "The team name on shirt is visible without a number, but all letters can be seen for team name.",
    "the player can be seen with him on the left close to the logo on the pitch on the right and can be clearly seen"
  ],
  "...":
  ["..."]
}

In order to appear on the leaderboard, please format your results in the following format:

{
  "MSR-VTT-videoTestVideo_video7763-shot2_1": [
    1,
    2
  ],
  "...":
  ["..."]
}

Where the example here with "1" and "2" represent image indices ranging from 0 to 9. You can submit to the leaderboard by sending your test set file (or a download link) to [email protected] and we will update the leaderboard quickly (max. 1-2 days). The leaderboard is maintained on the project website and might change its submission procedure at some point.

Installations

Run install.sh for running CLIP experiments. For VilBERT follow the instructions for volta.

Code

Code for CLIP is under baselines/clip and and code for ViLBERT/UNITER is under baselines/crossencoders.

For details commands to run each model variant shown in the paper, have a look at the README in baselines.

For example to train the best performing model CLIP+TemporalEmbeddings, run:

python3 contextual.py --lr 2e-6 --lr_head 1e-4 -b 36 -m ViT-B/16 --fusion mult -a gelu --logit_scale 1000 --finetuned_checkpoint_path checkpoints/CONTRA_clip_best__36_4e-06_30_1395526.pt --add_input --frozen_clip --positional

Data Analysis

Our manual annotation of various phenomena (negation, nuances, ...) in our validation set can be found under data/manual_annotation_valid.yaml

License

This work is licensed under the MIT license. See LICENSE for details. Third-party software and data sets are subject to their respective licenses.
If you want to cite our paper, please use:

@inproceedings{krojer_contextual_2022,
  address = {Online},
  title = {Image Retrieval from Contextual Descriptions},
  booktitle = {Proceedings of the 60th {Annual} {Meeting} of the {Association} for {Computational} {Linguistics},
  publisher = {Association for Computational Linguistics},
  author = {Krojer, Benno and Adlakha, Vaibhav and Vineet, Vibhav and Goyal, Yash and Ponti, Edoardo and Reddy, Siva},
  month = may,
  year = {2022},
}

Acknowledgement

Our data (specifically the image sets) are built upon 3 video dataset and Open Images:

We also the volta repository for ViLBERT and UNITER baseline variants

For questions or feedback, don't hesitate to contact the author: [email protected]

Owner
McGill NLP
Research group within McGill University and Mila focusing on various topics in natural language processing.
McGill NLP
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022