PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

Related tags

Deep LearningHAN
Overview

HAN

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

This repository is for HAN introduced in the following paper

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu, "Single Image Super-Resolution via a Holistic Attention Network", ECCV 2020, arxiv

The code is built on RCAN (PyTorch) and tested on Ubuntu 16.04/18.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs.

Contents


  1. Introduction
  2. Train
  3. Test
  4. Acknowledgements

Introduction

Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super- resolution approaches.

Train Prepare training data Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset.

Begin to train

(optional) Download models for our paper and place them in '/HAN/experiment/HAN'. All the models (BIX2/3/4/8, BDX3) can be downloaded from GoogleDrive. You can use scripts in file 'demo.sh' to train models for our paper.

BI, scale 2, 3, 4, 8
#HAN BI model (x2)

python main.py --template HAN --save HANx2 --scale 2 --reset --save_results --patch_size 96 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x3)

python main.py --template HAN --save HANx3 --scale 3 --reset --save_results --patch_size 144 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x4)

python main.py --template HAN --save HANx4 --scale 4 --reset --save_results --patch_size 192 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x8)

python main.py --template HAN --save HANx8 --scale 8 --reset --save_results --patch_size 384 --pre_train ../experiment/model/RCAN_BIX2.pt

Begin to Test

Quick start

Download models for our paper and place them in '/experiment/HAN'.

Cd to '/HAN/src', run the following scripts.
#test
python main.py --template HAN --data_test Set5+Set14+B100+Urban100+Manga109 --data_range 801-900 --scale 2 --pre_train ../experiment/HAN/HAN_BIX2.pt --test_only --save HANx2_test --save_results

All the models (BIX2/3/4/8, BDX3) can be downloaded from GoogleDrive.

The whole test pipeline

1.Prepare test data.

Place the original test sets in '/dataset/x4/test'.

Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

2.Conduct image SR.

See Quick start

3.Evaluate the results.

Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Acknowledgements

This code is built on RCAN. We thank the authors for sharing their codes of RCAN PyTorch version.

Owner
五维空间
五维空间
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022