A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Overview

Fully Distributed CIDACS-RL

The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However, its current implementation relies on a ElasticSearch Cluster to distribute the queries and a single node to perform them through Python Multiprocessing lib. This implementation of CIDACS-RL tool can be deployed in a Spark Cluster using all resources available by Jupyter Kernel still using the ElasticSearch cluster, becaming a fully distributed and cluster based solution. It can outperform the legacy version of CIDACS-RL either on multi-node or single node Spark Environment.

config.json

Almost all the aspects of the linkage can be manipulated by the config.json file.

Section Sub-section Field (datatype) Field description
General info index_data (str<'yes', 'no'>) This flag says if the linkage process includes the indexing of a data set into elastic search. Constraints: string, it can assume the values "yes" or "no".
General info es_index_name (str<ES_VALID_INDEX>) The name of an existing elasticsearch index (if index_data is 'no') or a new one (if index_data is 'yes'). Constraints: string, elasticsearch valid.
General info es_connect_string (str<ES_URL:ES_PORT>) Elasticsearch API address. Constraints: string, URL format.
General info query_size (int) Number of candidates output for each Elasticsearch query. Constraints: int.
General info cutoff_exact_match (str<0:1 number>) Cutoff point to determine wether a pair is an exact match or not. Constraints: str, number between 0 and 1.
General info null_value (str) Value to replace missings on both data sets involved. Constraints: string.
General info temp_dir (str) Directory used to write checkpoints for exact match and non-exact match phases. Constraints: string, fully qualified path.
General info debug (str<'true', 'false'>) If it is set as "true", all records found on exact match will be queried again on non-exact match phase.
Datasets info Indexed dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info Indexed dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info Indexed dataset columns (list) Python list with column names involved on linkage.
Datasets info Indexed dataset id_column_name (str) Name of id column.
Datasets info Indexed dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info Indexed dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info tolink dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info tolink dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info tolink dataset columns (list) Python list with column names involved on linkage.
Datasets info tolink dataset id_column_name (str) Name of id column.
Datasets info tolink dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info tolink dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info result dataset path (str) Path for csv or parquet folder of dataset to index.
Comparisons label1 indexed_col (str) Name of first column to be compared on indexed dataset
Comparisons label1 tolink_col (str) Name of first column to be compared on tolink dataset
Comparisons label1 must_match (str<'true', 'false'>) Set if this pair of columns are included on exact match phase
Comparisons label1 should_match (str<'true', 'false'>) Set if this pair of columns are included on non-exact match phase
Comparisons label1 is_fuzzy (str<'true', 'false'>) Set if this pair of columns are included on fuzzy queries for non-exact match phase
Comparisons label1 boost (str) Set the boost/weight of this pair of columns on queries
Comparisons label1 query_type (str<'match', 'term'>) Set the type of matching for this pair of columns on non-exact match phase
Comparisons label1 similarity (str<'jaro_winkler', 'overlap', 'hamming'> Set the similarity to be calculated between the values of this pair of columns
Comparisons label1 weight (str) Set the weight of this pair of columns.
Comparisons label1 penalty (str) Set the penalty of the overall similarity in case of missing value(s).
Comparisons label2 ... ...

config.json example


{
 'index_data': 'no',
 'es_index_name': 'fd-cidacs-rl',
 'es_connect_string': 'http://localhost:9200',
 'query_size': 100,
 'cutoff_exact_match': '0.95',
 'null_value': '99',
 'temp_dir': '../../../0_global_data/fd-cidacs-rl/temp_dataframe/',
 'debug': 'false',
 
 'datasets_info': {
    'indexed_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-dataset-A.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_a', 'nome_a', 'nome_mae_a', 'dt_nasc_a', 'sexo_a'],
        'id_column_name': 'id_cidacs_a',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'tolink_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-datasets-b/sinthetic-datasets-b-500000.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_b', 'nome_b', 'nome_mae_b', 'dt_nasc_b', 'sexo_b'],
        'id_column_name': 'id_cidacs_b',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'result_dataset': {
        'path': '../0_global_data/result/500000/'}},
        
 'comparisons': {
    'name': {
        'indexed_col': 'nome_a',
        'tolink_col': 'nome_b',
        'must_match': 'true',
        'should_match': 'true',
        'is_fuzzy': 'true',
        'boost': '3.0',
        'query_type': 'match',
        'similarity': 'jaro_winkler',
        'weight': 5.0,
        'penalty': 0.02},
    'mothers_name': {
       'indexed_col': 'nome_mae_a',
       'tolink_col': 'nome_mae_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'true',
       'boost': '2.0',
       'query_type': 'match',
       'similarity': 'jaro_winkler',
       'weight': 5.0,
       'penalty': 0.02},
  'birthdate': {
       'indexed_col': 'dt_nasc_a',
       'tolink_col': 'dt_nasc_b',
       'must_match': 'false',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'hamming',
       'weight': 1.0,
       'penalty': 0.02},
  'sex': {
       'indexed_col': 'sexo_a',
       'tolink_col': 'sexo_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'overlap',
       'weight': 3.0,
       'penalty': 0.02}}}

Running in a Standalone Spark Cluster

Read more: https://github.com/elastic/elasticsearch-hadoop https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html https://search.maven.org/artifact/org.elasticsearch/elasticsearch-spark-30_2.12 If you intend to run this tool into a single node Spark environment, consider to include this in you spark-submit or spark-shell command line


pyspark --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes="localhost" --conf spark.es.port="9200"

If you are running into a Spark Cluster under JupyterHUB kernels, try to add this kernel or edit an existing one:


{
	 "display_name": "Spark3.3",
	  "language": "python",
	   "argv": [
		     "/opt/bigdata/anaconda3/bin/python",
		       "-m",
		         "ipykernel",
			   "-f",
			     "{connection_file}"
			      ],
			       "env": {
				         "SPARK_HOME": "/opt/bigdata/spark",
					   "PYTHONPATH": "/opt/bigdata/spark/python:/opt/bigdata/spark/python/lib/py4j-0.10.9.2-src.zip",
					     "PYTHONSTARTUP": "/opt/bigdata/spark/python/pyspark/python/pyspark/shell.py",
					       "PYSPARK_PYTHON": "/opt/bigdata/anaconda3/bin/python",
					         "PYSPARK_SUBMIT_ARGS": "--master spark://node1.sparkcluster:7077 --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes=['node1','node2'] --conf spark.es.port='9200' pyspark-shell"
						  }
}

Some advices for indexed data and queries

  • Every col should be casted as string (df.withColumn('column', F.col('column').cast(string')))
  • Date type columns will not be proper indexed as string, except if some preprocessing step tranform it from yyyy-MM-dd to yyyyMMdd.
  • All the nodes of elasticsearch cluster must be included on --packages configuration.
  • Term queries are good to well structured variables, such as CPF, dates, CNPJ, etc.
Owner
Robespierre Pita
AI Researcher
Robespierre Pita
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022