A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Overview

Fully Distributed CIDACS-RL

The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However, its current implementation relies on a ElasticSearch Cluster to distribute the queries and a single node to perform them through Python Multiprocessing lib. This implementation of CIDACS-RL tool can be deployed in a Spark Cluster using all resources available by Jupyter Kernel still using the ElasticSearch cluster, becaming a fully distributed and cluster based solution. It can outperform the legacy version of CIDACS-RL either on multi-node or single node Spark Environment.

config.json

Almost all the aspects of the linkage can be manipulated by the config.json file.

Section Sub-section Field (datatype) Field description
General info index_data (str<'yes', 'no'>) This flag says if the linkage process includes the indexing of a data set into elastic search. Constraints: string, it can assume the values "yes" or "no".
General info es_index_name (str<ES_VALID_INDEX>) The name of an existing elasticsearch index (if index_data is 'no') or a new one (if index_data is 'yes'). Constraints: string, elasticsearch valid.
General info es_connect_string (str<ES_URL:ES_PORT>) Elasticsearch API address. Constraints: string, URL format.
General info query_size (int) Number of candidates output for each Elasticsearch query. Constraints: int.
General info cutoff_exact_match (str<0:1 number>) Cutoff point to determine wether a pair is an exact match or not. Constraints: str, number between 0 and 1.
General info null_value (str) Value to replace missings on both data sets involved. Constraints: string.
General info temp_dir (str) Directory used to write checkpoints for exact match and non-exact match phases. Constraints: string, fully qualified path.
General info debug (str<'true', 'false'>) If it is set as "true", all records found on exact match will be queried again on non-exact match phase.
Datasets info Indexed dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info Indexed dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info Indexed dataset columns (list) Python list with column names involved on linkage.
Datasets info Indexed dataset id_column_name (str) Name of id column.
Datasets info Indexed dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info Indexed dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info tolink dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info tolink dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info tolink dataset columns (list) Python list with column names involved on linkage.
Datasets info tolink dataset id_column_name (str) Name of id column.
Datasets info tolink dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info tolink dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info result dataset path (str) Path for csv or parquet folder of dataset to index.
Comparisons label1 indexed_col (str) Name of first column to be compared on indexed dataset
Comparisons label1 tolink_col (str) Name of first column to be compared on tolink dataset
Comparisons label1 must_match (str<'true', 'false'>) Set if this pair of columns are included on exact match phase
Comparisons label1 should_match (str<'true', 'false'>) Set if this pair of columns are included on non-exact match phase
Comparisons label1 is_fuzzy (str<'true', 'false'>) Set if this pair of columns are included on fuzzy queries for non-exact match phase
Comparisons label1 boost (str) Set the boost/weight of this pair of columns on queries
Comparisons label1 query_type (str<'match', 'term'>) Set the type of matching for this pair of columns on non-exact match phase
Comparisons label1 similarity (str<'jaro_winkler', 'overlap', 'hamming'> Set the similarity to be calculated between the values of this pair of columns
Comparisons label1 weight (str) Set the weight of this pair of columns.
Comparisons label1 penalty (str) Set the penalty of the overall similarity in case of missing value(s).
Comparisons label2 ... ...

config.json example


{
 'index_data': 'no',
 'es_index_name': 'fd-cidacs-rl',
 'es_connect_string': 'http://localhost:9200',
 'query_size': 100,
 'cutoff_exact_match': '0.95',
 'null_value': '99',
 'temp_dir': '../../../0_global_data/fd-cidacs-rl/temp_dataframe/',
 'debug': 'false',
 
 'datasets_info': {
    'indexed_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-dataset-A.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_a', 'nome_a', 'nome_mae_a', 'dt_nasc_a', 'sexo_a'],
        'id_column_name': 'id_cidacs_a',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'tolink_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-datasets-b/sinthetic-datasets-b-500000.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_b', 'nome_b', 'nome_mae_b', 'dt_nasc_b', 'sexo_b'],
        'id_column_name': 'id_cidacs_b',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'result_dataset': {
        'path': '../0_global_data/result/500000/'}},
        
 'comparisons': {
    'name': {
        'indexed_col': 'nome_a',
        'tolink_col': 'nome_b',
        'must_match': 'true',
        'should_match': 'true',
        'is_fuzzy': 'true',
        'boost': '3.0',
        'query_type': 'match',
        'similarity': 'jaro_winkler',
        'weight': 5.0,
        'penalty': 0.02},
    'mothers_name': {
       'indexed_col': 'nome_mae_a',
       'tolink_col': 'nome_mae_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'true',
       'boost': '2.0',
       'query_type': 'match',
       'similarity': 'jaro_winkler',
       'weight': 5.0,
       'penalty': 0.02},
  'birthdate': {
       'indexed_col': 'dt_nasc_a',
       'tolink_col': 'dt_nasc_b',
       'must_match': 'false',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'hamming',
       'weight': 1.0,
       'penalty': 0.02},
  'sex': {
       'indexed_col': 'sexo_a',
       'tolink_col': 'sexo_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'overlap',
       'weight': 3.0,
       'penalty': 0.02}}}

Running in a Standalone Spark Cluster

Read more: https://github.com/elastic/elasticsearch-hadoop https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html https://search.maven.org/artifact/org.elasticsearch/elasticsearch-spark-30_2.12 If you intend to run this tool into a single node Spark environment, consider to include this in you spark-submit or spark-shell command line


pyspark --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes="localhost" --conf spark.es.port="9200"

If you are running into a Spark Cluster under JupyterHUB kernels, try to add this kernel or edit an existing one:


{
	 "display_name": "Spark3.3",
	  "language": "python",
	   "argv": [
		     "/opt/bigdata/anaconda3/bin/python",
		       "-m",
		         "ipykernel",
			   "-f",
			     "{connection_file}"
			      ],
			       "env": {
				         "SPARK_HOME": "/opt/bigdata/spark",
					   "PYTHONPATH": "/opt/bigdata/spark/python:/opt/bigdata/spark/python/lib/py4j-0.10.9.2-src.zip",
					     "PYTHONSTARTUP": "/opt/bigdata/spark/python/pyspark/python/pyspark/shell.py",
					       "PYSPARK_PYTHON": "/opt/bigdata/anaconda3/bin/python",
					         "PYSPARK_SUBMIT_ARGS": "--master spark://node1.sparkcluster:7077 --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes=['node1','node2'] --conf spark.es.port='9200' pyspark-shell"
						  }
}

Some advices for indexed data and queries

  • Every col should be casted as string (df.withColumn('column', F.col('column').cast(string')))
  • Date type columns will not be proper indexed as string, except if some preprocessing step tranform it from yyyy-MM-dd to yyyyMMdd.
  • All the nodes of elasticsearch cluster must be included on --packages configuration.
  • Term queries are good to well structured variables, such as CPF, dates, CNPJ, etc.
Owner
Robespierre Pita
AI Researcher
Robespierre Pita
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022