Instant Real-Time Example-Based Style Transfer to Facial Videos

Related tags

Deep LearningFaceBlit
Overview

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos

The official implementation of

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos
A. Texler, O. Texler, M. Kučera, M. Chai, and D. Sýkora
🌐 Project Page, 📄 Paper, 📚 BibTeX

FaceBlit is a system for real-time example-based face video stylization that retains textural details of the style in a semantically meaningful manner, i.e., strokes used to depict specific features in the style are present at the appropriate locations in the target image. As compared to previous techniques, our system preserves the identity of the target subject and runs in real-time without the need for large datasets nor lengthy training phase. To achieve this, we modify the existing face stylization pipeline of Fišer et al. [2017] so that it can quickly generate a set of guiding channels that handle identity preservation of the target subject while are still compatible with a faster variant of patch-based synthesis algorithm of Sýkora et al. [2019]. Thanks to these improvements we demonstrate a first face stylization pipeline that can instantly transfer artistic style from a single portrait to the target video at interactive rates even on mobile devices.

Teaser

Introduction

⚠️ DISCLAIMER: This is a research project, not a production-ready application, it may contain bugs!

This implementation is designed for two platforms - Windows and Android.

  • All C++ sources are located in FaceBlit/app/src/main/cpp, except for main.cpp and main_extension.cpp which can be found in FaceBlit/VS
  • All Java sources are stored in FaceBlit/app/src/main/java/texler/faceblit
  • Style exemplars (.png) are located in FaceBlit/app/src/main/res/drawable
  • Files holding detected landmarks (.txt) and lookup tables (.bytes) for each style are located in FaceBlit/app/src/main/res/raw
  • The algorithm assumes the style image and input video/image have the same resolution

Build and Run

  • Clone the repository git clone https://github.com/AnetaTexler/FaceBlit.git
  • The repository contains all necessary LIB files and includes for both platforms, except for the OpenCV DLL files for Windows
  • The project uses Dlib 19.21 which is added as one source file (FaceBlit/app/src/main/cpp/source.cpp) and will be compiled with other sources; so you don't have to worry about that

Windows

  • The OpenCV 4.5.0 is required, you can download the pre-built version directly from here and add opencv_world450d.dll and opencv_world450.dll files from opencv-4.5.0-vc14_vc15/build/x64/vc15/bin into your PATH
  • Open the solution FaceBlit/VS/FaceBlit.sln in Visual Studio (tested with VS 2019)
  • Provide a facial video/image or use existing sample videos and images in FaceBlit/VS/TESTS.
    • The input video/image has to be in resolution 768x1024 pixels (width x height)
  • In main() function in FaceBlit/VS/main.cpp, you can change parameters:
    • targetPath - path to input images and videos (there are some sample inputs in FaceBlit/VS/TESTS)
    • targetName - name of a target PNG image or MP4 video with extension (e.g. "target2.mp4")
    • styleName - name of a style with extension from the FaceBlit/app/src/main/res/drawable path (e.g. "style_het.png")
    • stylizeBG - true/false (true - stylize the whole image/video, does not always deliver pleasing results; false - stylize only face)
    • NNF_patchsize - voting patch size (odd number, ideal is 3 or 5); 0 for no voting
  • Finally, run the code and see results in FaceBlit/VS/TESTS

Android

  • OpenCV binaries (.so) are already included in the repository (FaceBlit/app/src/main/jniLibs)
  • Open the FaceBlit project in Android Studio (tested with Android Studio 4.1.3 and gradle 6.5), install NDK 21.0.6 via File > Settings > Appearance & Behavior > System Settings > Android SDK > SDK Tools and build the project.
  • Install the application on your mobile and face to the camera (works with both front and back). Press the right bottom button to display styles (scroll right to show more) and choose one. Wait a few seconds until the face detector loads, and enjoy the style transfer!

License

The algorithm is not patented. The code is released under the public domain - feel free to use it for research or commercial purposes.

Citing

If you find FaceBlit useful for your research or work, please use the following BibTeX entry.

@Article{Texler21-I3D,
    author    = "Aneta Texler and Ond\v{r}ej Texler and Michal Ku\v{c}era and Menglei Chai and Daniel S\'{y}kora",
    title     = "FaceBlit: Instant Real-time Example-based Style Transfer to Facial Videos",
    journal   = "Proceedings of the ACM in Computer Graphics and Interactive Techniques",
    volume    = "4",
    number    = "1",
    year      = "2021",
}
Owner
Aneta Texler
Aneta Texler
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022