Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

Overview

Python 3.6

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes

Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Chang-Su Kim

overview

Official implementation for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes" [paper] [supp] [video].

We construct a new dataset called "SDLane". SDLane is available at here. Now, only test set is provided due to privacy issues. All dataset will be provided soon.

Video

Video

Related work

We wil also present another paper, "Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation", accepted to CVPR 2022 (oral) [github] [video].

Requirements

  • PyTorch >= 1.6
  • CUDA >= 10.0
  • CuDNN >= 7.6.5
  • python >= 3.6

Installation

  1. Download repository. We call this directory as ROOT:
$ git clone https://github.com/dongkwonjin/Eigenlanes.git
  1. Download pre-trained model parameters and preprocessed data in ROOT:
$ cd ROOT
$ unzip pretrained.zip
$ unzip preprocessed.zip
  1. Create conda environment:
$ conda create -n eigenlanes python=3.7 anaconda
$ conda activate eigenlanes
  1. Install dependencies:
$ conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
$ pip install -r requirements.txt

Directory structure

.                           # ROOT
├── Preprocessing           # directory for data preprocessing
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── P00             # preprocessing step 1
|   |   |   ├── code
|   |   ├── P01             # preprocessing step 2
|   |   |   ├── code
|   │   └── ...
│   └── ...                 # etc.
├── Modeling                # directory for modeling
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── code
│   ├── tusimple           
|   |   ├── code
│   └── ...                 # etc.
├── pretrained              # pretrained model parameters 
│   ├── culane              
│   ├── tusimple            
│   └── ...                 # etc.
├── preprocessed            # preprocessed data
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── P03             
|   |   |   ├── output
|   |   ├── P04             
|   |   |   ├── output
|   │   └── ...
│   └── ...
.

Evaluation (for CULane)

To test on CULane, you need to install official CULane evaluation tools. The official metric implementation is available here. Please downloads the tools into ROOT/Modeling/culane/code/evaluation/culane/. The tools require OpenCV C++. Please follow here to install OpenCV C++. Then, you compile the evaluation tools. We recommend to see an installation guideline

$ cd ROOT/Modeling/culane/code/evaluation/culane/
$ make

Train

  1. Set the dataset you want to train (DATASET_NAME)
  2. Parse your dataset path into the -dataset_dir argument.
  3. Edit config.py if you want to control the training process in detail
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode train --pre_dir ROOT/preprocessed/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/ 

Test

  1. Set the dataset you want to test (DATASET_NAME)
  2. Parse your dataset path into the -dataset_dir argument.
  3. If you want to get the performances of our work,
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode test_paper --pre_dir ROOT/preprocessed/DATASET_NAME/ --paper_weight_dir ROOT/pretrained/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/
  1. If you want to evaluate a model you trained,
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode test --pre_dir ROOT/preprocessed/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/

Preprocessing

example

Data preprocessing is divided into five steps, which are P00, P01, P02, P03, and P04. Below we describe each step in detail.

  1. In P00, the type of ground-truth lanes in a dataset is converted to pickle format.
  2. In P01, each lane in a training set is represented by 2D points sampled uniformly in the vertical direction.
  3. In P02, lane matrix is constructed and SVD is performed. Then, each lane is transformed to its coefficient vector.
  4. In P03, clustering is performed to obtain lane candidates.
  5. In P04, training labels are generated to train the SI module in the proposed SIIC-Net.

If you want to get the preproessed data, please run the preprocessing codes in order. Also, you can download the preprocessed data.

$ cd ROOT/Preprocessing/DATASET_NAME/PXX_each_preprocessing_step/code/
$ python main.py --dataset_dir /where/is/your/dataset/path/

Reference

@Inproceedings{
    Jin2022eigenlanes,
    title={Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes},
    author={Jin, Dongkwon and Park, Wonhui and Jeong, Seong-Gyun and Kwon, Heeyeon and Kim, Chang-Su},
    booktitle={CVPR},
    year={2022}
}
Owner
Dongkwon Jin
BS: EE, Korea University Grad: EE, Korea University (Current)
Dongkwon Jin
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022