The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

Overview

FQ-ViT [arXiv]

This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

Table of Contents

Introduction

Transformer-based architectures have achieved competitive performance in various CV tasks. Compared to the CNNs, Transformers usually have more parameters and higher computational costs, presenting a challenge when deployed to resource-constrained hardware devices.

Most existing quantization approaches are designed and tested on CNNs and lack proper handling of Transformer-specific modules. Previous work found there would be significant accuracy degradation when quantizing LayerNorm and Softmax of Transformer-based architectures. As a result, they left LayerNorm and Softmax unquantized with floating-point numbers. We revisit these two exclusive modules of the Vision Transformers and discover the reasons for degradation. In this work, we propose the FQ-ViT, the first fully quantized Vision Transformer, which contains two specific modules: Powers-of-Two Scale (PTS) and Log-Int-Softmax (LIS).

Layernorm quantized with Powers-of-Two Scale (PTS)

These two figures below show that there exists serious inter-channel variation in Vision Transformers than CNNs, which leads to unacceptable quantization errors with layer-wise quantization.

Taking the advantages of both layer-wise and channel-wise quantization, we propose PTS for LayerNorm's quantization. The core idea of PTS is to equip different channels with different Powers-of-Two Scale factors, rather than different quantization scales.

Softmax quantized with Log-Int-Softmax (LIS)

The storage and computation of attention map is known as a bottleneck for transformer structures, so we want to quantize it to extreme lower bit-width (e.g. 4-bit). However, if directly implementing 4-bit uniform quantization, there will be severe accuracy degeneration. We observe a distribution centering at a fairly small value of the output of Softmax, while only few outliers have larger values close to 1. Based on the following visualization, Log2 preserves more quantization bins than uniform for the small value interval with dense distribution.

Combining Log2 quantization with i-exp, which is a polynomial approximation of exponential function presented by I-BERT, we propose LIS, an integer-only, faster, low consuming Softmax.

The whole process is visualized as follow.

Getting Started

Install

  • Clone this repo.
git clone https://github.com/linyang-zhh/FQ-ViT.git
cd FQ-ViT
  • Create a conda virtual environment and activate it.
conda create -n fq-vit python=3.7 -y
conda activate fq-vit
  • Install PyTorch and torchvision. e.g.,
conda install pytorch=1.7.1 torchvision cudatoolkit=10.1 -c pytorch

Data preparation

You should download the standard ImageNet Dataset.

├── imagenet
│   ├── train
|
│   ├── val

Run

Example: Evaluate quantized DeiT-S with MinMax quantizer and our proposed PTS and LIS

python test_quant.py deit_small <YOUR_DATA_DIR> --quant --pts --lis --quant-method minmax
  • deit_small: model architecture, which can be replaced by deit_tiny, deit_base, vit_base, vit_large, swin_tiny, swin_small and swin_base.

  • --quant: whether to quantize the model.

  • --pts: whether to use Power-of-Two Scale Integer Layernorm.

  • --lis: whether to use Log-Integer-Softmax.

  • --quant-method: quantization methods of activations, which can be chosen from minmax, ema, percentile and omse.

Results on ImageNet

This paper employs several current post-training quantization strategies together with our methods, including MinMax, EMA , Percentile and OMSE.

  • MinMax uses the minimum and maximum values of the total data as the clipping values;

  • EMA is based on MinMax and uses an average moving mechanism to smooth the minimum and maximum values of different mini-batch;

  • Percentile assumes that the distribution of values conforms to a normal distribution and uses the percentile to clip. In this paper, we use the 1e-5 percentile because the 1e-4 commonly used in CNNs has poor performance in Vision Transformers.

  • OMSE determines the clipping values by minimizing the quantization error.

The following results are evaluated on ImageNet.

Method W/A/Attn Bits ViT-B ViT-L DeiT-T DeiT-S DeiT-B Swin-T Swin-S Swin-B
Full Precision 32/32/32 84.53 85.81 72.21 79.85 81.85 81.35 83.20 83.60
MinMax 8/8/8 23.64 3.37 70.94 75.05 78.02 64.38 74.37 25.58
MinMax w/ PTS 8/8/8 83.31 85.03 71.61 79.17 81.20 80.51 82.71 82.97
MinMax w/ PTS, LIS 8/8/4 82.68 84.89 71.07 78.40 80.85 80.04 82.47 82.38
EMA 8/8/8 30.30 3.53 71.17 75.71 78.82 70.81 75.05 28.00
EMA w/ PTS 8/8/8 83.49 85.10 71.66 79.09 81.43 80.52 82.81 83.01
EMA w/ PTS, LIS 8/8/4 82.57 85.08 70.91 78.53 80.90 80.02 82.56 82.43
Percentile 8/8/8 46.69 5.85 71.47 76.57 78.37 78.78 78.12 40.93
Percentile w/ PTS 8/8/8 80.86 85.24 71.74 78.99 80.30 80.80 82.85 83.10
Percentile w/ PTS, LIS 8/8/4 80.22 85.17 71.23 78.30 80.02 80.46 82.67 82.79
OMSE 8/8/8 73.39 11.32 71.30 75.03 79.57 79.30 78.96 48.55
OMSE w/ PTS 8/8/8 82.73 85.27 71.64 78.96 81.25 80.64 82.87 83.07
OMSE w/ PTS, LIS 8/8/4 82.37 85.16 70.87 78.42 80.90 80.41 82.57 82.45

Citation

If you find this repo useful in your research, please consider citing the following paper:

@misc{
    lin2021fqvit,
    title={FQ-ViT: Fully Quantized Vision Transformer without Retraining}, 
    author={Yang Lin and Tianyu Zhang and Peiqin Sun and Zheng Li and Shuchang Zhou},
    year={2021},
    eprint={2111.13824},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022