Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Related tags

Deep LearningBSRDM
Overview

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

GitHub versionvisitors

This repository is the official PyTorch implementation of BSRDM with application to blind image super-resolution (arXiv).


While researches on model-based blind single image super-resolution (SISR) have achieved tremendous successes recently, most of them do not consider the image degradation sufficiently. Firstly, they always assume image noise obeys an independent and identically distributed (i.i.d.) Gaussian or Laplacian distribution, which largely underestimates the complexity of real noise. Secondly, previous commonly-used kernel priors (e.g., normalization, sparsity) are not effective enough to guarantee a rational kernel solution, and thus degenerates the performance of subsequent SISR task. To address the above issues, this paper proposes a model-based blind SISR method under the probabilistic framework, which elaborately models image degradation from the perspectives of noise and blur kernel. Specifically, instead of the traditional i.i.d. noise assumption, a patch-based non-i.i.d. noise model is proposed to tackle the complicated real noise, expecting to increase the degrees of freedom of the model for noise representation. As for the blur kernel, we novelly construct a concise yet effective kernel generator, and plug it into the proposed blind SISR method as an explicit kernel prior (EKP). To solve the proposed model, a theoretically grounded Monte Carlo EM algorithm is specifically designed. Comprehensive experiments demonstrate the superiority of our method over current state-of-the-arts on synthetic and real datasets.


Requirements

  • Ubuntu 18.04, cuda 11.0
  • Python 3.8.11, Pytorch 1.7.1
  • More detail (See environment.yml)

Evaluation on Synthetic Data

  1. The synthesized six blur kernels used in our paper can be obtained from here. They are generated by this manuscript.
  2. To test BSRDM under camera sensor noise, run this command:
    python demo_synthetic.py --sf 2 --noise_type signal --noise_estimator niid 
    For the Gaussian noise, run this command:
    python demo_synthetic.py --sf 2 --noise_type Gaussian --noise_level 2.55 --noise_estimator iid 
    In our paper, we use the direct downsampler as default. You can also specify the bicubic or bilinear downsampler. For example,
    python demo_synthetic.py --sf 2 --noise_type Gaussian --noise_level 2.55 --noise_estimator iid --downsampler Bicubic

Evaluation on Real Data

  1. To test BSRDM on the RealSRSet, run this command by specifying your desired scale factor (2,3,or 4):
    python demo_real.py --sf 2
    
  2. Note that in our paper we uniformly set the hyper-parameter \rho to be 0.2. In this manuscript, we adjust the settings of \rho for some images based on the visual results. And the suggested values for \rho is in the range [0.2, 0.4].

License & Acknowledgement

This project is realeased under the GPL-3.0 license. The codes are based on CBDNet, ResizeRight, DIP, and FKP. Please also follow their licenses. Thanks for their great efforts.

Owner
Zongsheng Yue
I'm a currently postdoctoral researcher at the Computer Vision Laboratory, HKU.
Zongsheng Yue
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023