Project NII pytorch scripts

Overview

project-NII-pytorch-scripts

By Xin Wang, National Institute of Informatics, since 2021

I am a new pytorch user. If you have any suggestions or questions, pleas email wangxin at nii dot ac dot jp

Table of Contents


1. Note

For tutorials on neural vocoders

Tutorials are available in ./tutorials. Please follow the ./tutorials/README and work in this folder first

cd ./tutorials
head -n 2 README.md
# Hands-on materials for neural vocoders

For other projects

Just follow the rest of the README.

The repository is relatively large. You may use --depth 1 option to skip unnecessary files.

git clone --depth 1 https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts.git

Updates

2022-01-08: upload hn-sinc-nsf + hifi-gan

2022-01-08: upload RawNet2 for anti-spoofing

2. Overview

This repository hosts Pytorch codes for the following projects:

2.1 Neural source-filter waveform model

./project/01-nsf

  1. Cyclic-noise neural source-filter waveform model (NSF)

  2. Harmonic-plus-noise NSF with trainable sinc filter (Hn-sinc-NSF)

  3. Harmonic-plus-noise NSF with fixed FIR filter (Hn-NSF)

  4. Hn-sinc-NSF + HiFiGAN discriminator

All the projects include a pre-trained model on CMU-arctic database (4 speakers) and a demo script to run, train, do inference. Please check ./project/01-nsf/README.

Generated samples from pre-trained models are in ./project/01-nsf/*/__pre_trained/output. If not, please run the demo script to produce waveforms using pre-trained models.

Tutorial on NSF models is also available in ./tutorials

Note that this is the re-implementation of the projects based on CURRENNT. All the papers published so far used CURRENNT implementation.

Many samples can be found on NSF homepage.

2.2 Other neural waveform models

./project/05-nn-vocoders

  1. WaveNet vocoder

  2. WaveGlow

  3. Blow

  4. iLPCNet

All the projects include a pre-trained model and a one-click demo script. Please check ./project/05-nn-vocoders/README.

Generated samples from pre-trained models are in ./project/05-nn-vocoders/*/__pre_trained/output.

Tutorial is also available in ./tutorials

2.3 ASVspoof project with toy example

./project/04-asvspoof2021-toy

It takes time to download ASVspoof2019 database. Therefore, this project demonstrates how to train and evaluate the anti-spoofing model using a toy dataset.

Please try this project before checking other ASVspoof projects below.

A similar project is adopted for ASVspoof2021 LFCC-LCNN baseline, although the LFCC front-end is slightly different.

Please check ./project/04-asvspoof2021-toy/README.

2.4 Speech anti-spoofing for ASVspoof 2019 LA

./project/03-asvspoof-mega

This is for this anti-spoofing project (A Comparative Study on Recent Neural Spoofing Countermeasures for Synthetic Speech Detection, paper on arxiv).

There were 36 systems investigated, each of which was trained and evaluated for 6 rounds with different random seeds.

EER-mintDCF

This project is later extended to a book chapter called A Practical Guide to Logical Access Voice Presentation Attack Detection. Single system using RawNet2 is added, and score fusion is added.

EER-mintDCF

Pre-trained models, scores, training recipes are all available. Please check ./project/03-asvspoof-mega/README.

2.5 (Preliminary) speech anti-spoofing

./project/02-asvspoof

  1. Baseline LFCC + LCNN-binary-classifier (lfcc-lcnn-sigmoid)

  2. LFCC + LCNN + angular softmax (lfcc-lcnn-a-softmax)

  3. LFCC + LCNN + one-class softmax (lfcc-lcnn-ocsoftmax)

  4. LFCC + ResNet18 + one-class softmax (lfcc-restnet-ocsoftmax)

This is a pilot test on ASVspoof2019 LA task. I trained each system for 6 times on various GPU devices (single V100 or P100 card), each time with a different random initial seed. Figure below shows the DET curves for these systems: det_curve

The results vary a lot when simply changing the initial random seeds, even with the same random seed, Pytorch environment, and deterministic algorithm selected. This preliminary test motivated the study in ./project-03-asvspoof-mega.

For LCNN, please check this paper; for LFCC, please check this paper; for one-class softmax in ASVspoof, please check this paper.

3. Python environment

You may use ./env.yml to create the environment:

# create environment
conda env create -f env.yml

# load environment (whose name is pytorch-1.6)
conda activate pytorch-1.6

4. How to use

Take project/01-nsf/cyc-noise-nsf as an example:

# cd into one project
cd project/01-nsf/cyc-noise-nsf-4

# add PYTHONPATH and activate conda environment
source ../../../env.sh 

# run the script
bash 00_demo.sh

The printed info will show what is happening. The script may need 1 day or more to finish.

You may also put the job to the background rather than waiting for the job in front of the terminal:

# run the script in background
bash 00_demo.sh > log_batch 2>&1 &

The above steps will download the CMU-arctic data, run waveform generation using a pre-trained model, and train a new model.

5. Project design and convention

Data format

  • Waveform: 16/32-bit PCM or 32-bit float WAV that can be read by scipy.io.wavfile.read

  • Other data: binary, float-32bit, little endian (numpy dtype ). The data can be read in python by:

# for a data of shape [N, M]
f = open(filepath,'rb')
datatype = np.dtype(('
   ,(M,)))
data = np.fromfile(f,dtype=datatype)
f.close()

I assume data should be stored in c_continuous format (row-major). There are helper functions in ./core_scripts/data_io/io_tools.py to read and write binary data:

# create a float32 data array
import numpy as np
data = np.asarray(np.random.randn(5, 3), dtype=np.float32)

# write to './temp.bin' and read it as data2
import core_scripts.data_io.io_tools as readwrite
readwrite.f_write_raw_mat(data, './temp.bin')
data2 = readwrite.f_read_raw_mat('./temp.bin', 3)

# result should 0
data - data2

More instructions can be found in the Jupyter notebook ./tutorials/c01_data_format.ipynb.

Files in this repository

Name Function
./core_scripts scripts to manage the training process, data io, and so on
./core_modules finished pytorch modules
./sandbox new functions and modules to be test
./project project directories, and each folder correspond to one model for one dataset
./project/*/*/main.py script to load data and run training and inference
./project/*/*/model.py model definition based on Pytorch APIs
./project/*/*/config.py configurations for training/val/test set data

The motivation is to separate the training and inference process, the model definition, and the data configuration. For example:

  • To define a new model, change model.py

  • To run on a new database, change config.py

How the script works

The script starts with main.py and calls different function for model training and inference.

During training:

     <main.py>        Entry point and controller of training process
        |           
   Argument parse     core_scripts/config_parse/arg_parse.py
   Initialization     core_scripts/startup_config.py
   Choose device     
        | 
Initialize & load     core_scripts/data_io/customize_dataset.py
training data set
        |----------|
        .     Load data set   <config.py> 
        .     configuration 
        .          |
        .     Loop over       core_scripts/data_io/customize_dataset.py
        .     data subset
        .          |       
        .          |---------|
        .          .    Load one subset   core_scripts/data_io/default_data_io.py
        .          .         |
        .          |---------|
        .          |
        .     Combine subsets 
        .     into one set
        .          |
        |----------|
        |
Initialize & load 
development data set  
        |
Initialize Model     <model.py>
Model(), Loss()
        | 
Initialize Optimizer core_scripts/op_manager/op_manager.py
        |
Load checkpoint      --trained-model option to main.py
        |
Start training       core_scripts/nn_manager/nn_manager.py f_train_wrapper()
        |             
        |----------|
        .          |
        .     Loop over training data
        .     for one epoch
        .          |
        .          |-------|    core_scripts/nn_manager/nn_manager.py f_run_one_epoch()
        .          |       |    
        .          |  Loop over 
        .          |  training data
        .          |       |
        .          |       |-------|
        .          |       .    get data_in, data_tar, data_info
        .          |       .    Call data_gen <- Model.forward(...)   <mode.py>
        .          |       .    Call Loss.compute()                   <mode.py>
        .          |       .    loss.backward()
        .          |       .    optimizer.step()
        .          |       .       |
        .          |       |-------|
        .          |       |
        .          |  Save checkpoint 
        .          |       |
        .          |  Early stop?
        .          |       | No  \
        .          |       |      \ Yes
        .          |<------|       |
        .                          |
        |--------------------------|
       Done

A detailed flowchat is ./misc/APPENDIX_1.md. This may be useful if you want to hack on the code.

6 On NSF projects (./project/01-nsf)

Differences from CURRENNT implementation

There may be more, but here are the important ones:

  • "Batch-normalization": in CURRENNT, "batch-normalization" is conducted along the length sequence, i.e., assuming each frame as one sample;

  • No bias in CNN and FF: due to the 1st point, NSF in this repository uses bias=false for CNN and feedforward layers in neural filter blocks, which can be helpful to make the hidden signals around 0;

  • Smaller learning rate: due to the 1st point, learning rate in this repository is decreased from 0.0003 to a smaller value. Accordingly, more training epochs are required;

  • STFT framing/padding: in CURRENNT, the first frame starts from the 1st step of a signal; in this Pytorch repository (as Librosa), the first frame is centered around the 1st step of a signal, and the frame is padded with 0;

  • STFT backward: in CURRENNT, STFT backward follows the steps in this paper; in Pytorch repository, backward over STFT is done by the Pytorch library.

  • ...

The learning curves look similar to the CURRENNT version. learning_curve

24kHz

Most of my experiments are done on 16 kHz waveforms. For 24 kHz waveforms, FIR or sinc digital filters in the model may be changed for better performance:

  1. hn-nsf: lp_v, lp_u, hp_v, and hp_u are calculated for 16 kHz configurations. For different sampling rate, you may use this online tool http://t-filter.engineerjs.com to get the filter coefficients. In this case, the stop-band for lp_v and lp_u is extended to 12k, while the pass-band for hp_v and hp_u is extended to 12k. The reason is that, no matter what is the sampling rate, the actual formats (in Hz) and spectral of sounds don't change with the sampling rate;

  2. hn-sinc-nsf and cyc-noise-nsf: for the similar reason above, the cut-off-frequency value (0, 1) should be adjusted. I will try (hidden_feat * 0.2 + uv * 0.4 + 0.3) * 16 / 24 in model.CondModuleHnSincNSF.get_cut_f();

Links

The end

Owner
Yamagishi and Echizen Laboratories, National Institute of Informatics
Yamagishi and Echizen Laboratories, National Institute of Informatics, Japan
Yamagishi and Echizen Laboratories, National Institute of Informatics
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023