[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

Contents

Cycle-In-Cycle GANs

| Conference Paper | Extended Paper | Project |
Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Hao Tang1, Dan Xu2, Gaowen Liu3, Wei Wang4, Nicu Sebe1 and Yan Yan3
1University of Trento, 2University of Oxford, 3Texas State University, 4EPFL
The repository offers the official implementation of our paper in PyTorch.

In the meantime, check out our related BMVC 2020 oral paper Bipartite Graph Reasoning GANs for Person Image Generation, ECCV 2020 paper XingGAN for Person Image Generation, and ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

C2GAN Framework

Framework

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/C2GAN
cd C2GAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA TITAN Xp GPUs.

Dataset Preparation

For your convenience we provide download scripts:

bash ./datasets/download_c2gan_dataset.sh RaFD_image_landmark
  • RaFD_image_landmark: 3.0 GB

or you can use ./scripts/convert_pts_to_figure.m to convert the generated pts files to figures.

Prepare the datasets like in this folder after the download has finished. Please cite their paper if you use the data.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., Radboud) with the following script:
bash ./scripts/download_c2gan_model.sh Radboud
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/Radboud --name Radboud_pretrained --model c2gan --which_model_netG unet_256 --which_direction AtoB --dataset_mode aligned --norm batch --gpu_ids 0 --batch 16;

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Train and Test New Models

  • Download a dataset using the previous script (e.g., Radboud).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./train_c2gan.sh
  • To see more intermediate results, check out ./checkpoints/Radboud_c2gan/web/index.html.
  • Test the model:
sh ./test_c2gan.sh
  • The test results will be saved to a html file here: ./results/Radboud_c2gan/latest_test/index.html.

Acknowledgments

This source code is inspired by Pix2pix, and GestureGAN.

Related Projects

BiGraphGAN | XingGAN | GestureGAN | SelectionGAN | Guided-I2I-Translation-Papers

Citation

If you use this code for your research, please cite our paper.

C2GAN

@article{tang2021total,
  title={Total Generate: Cycle in Cycle Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes},
  author={Tang, Hao and Sebe, Nicu},
  journal={IEEE Transactions on Multimedia (TMM)},
  year={2021}
}

@inproceedings{tang2019cycleincycle,
  title={Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation},
  author={Tang, Hao and Xu, Dan and Liu, Gaowen and Wang, Wei and Sebe, Nicu and Yan, Yan},
  booktitle={ACM MM},
  year={2019}
}

If you use the original BiGraphGAN, XingGAN, GestureGAN, and SelectionGAN model, please cite the following papers:

BiGraphGAN

@inproceedings{tang2020bipartite,
  title={Bipartite Graph Reasoning GANs for Person Image Generation},
  author={Tang, Hao and Bai, Song and Torr, Philip HS and Sebe, Nicu},
  booktitle={BMVC},
  year={2020}
}

XingGAN

@inproceedings{tang2020xinggan,
  title={XingGAN for Person Image Generation},
  author={Tang, Hao and Bai, Song and Zhang, Li and Torr, Philip HS and Sebe, Nicu},
  booktitle={ECCV},
  year={2020}
}

GestureGAN

@article{tang2019unified,
  title={Unified Generative Adversarial Networks for Controllable Image-to-Image Translation},
  author={Tang, Hao and Liu, Hong and Sebe, Nicu},
  journal={IEEE Transactions on Image Processing (TIP)},
  year={2020}
}

@inproceedings{tang2018gesturegan,
  title={GestureGAN for Hand Gesture-to-Gesture Translation in the Wild},
  author={Tang, Hao and Wang, Wei and Xu, Dan and Yan, Yan and Sebe, Nicu},
  booktitle={ACM MM},
  year={2018}
}

SelectionGAN

@inproceedings{tang2019multi,
  title={Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Wang, Yanzhi and Corso, Jason J and Yan, Yan},
  booktitle={CVPR},
  year={2019}
}

@article{tang2020multi,
  title={Multi-channel attention selection gans for guided image-to-image translation},
  author={Tang, Hao and Xu, Dan and Yan, Yan and Corso, Jason J and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2002.01048},
  year={2020}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


If you can do what you do best and be happy, you're further along in life than most people.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022